| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspcv | Unicode version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) |
| Ref | Expression |
|---|---|
| rspcv.1 |
|
| Ref | Expression |
|---|---|
| rspcv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 |
. 2
| |
| 2 | rspcv.1 |
. 2
| |
| 3 | 1, 2 | rspc 2871 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 |
| This theorem is referenced by: rspccv 2874 rspcva 2875 rspccva 2876 rspcdva 2882 rspc3v 2893 rr19.3v 2912 rr19.28v 2913 rspsbc 3081 rspc2vd 3162 intmin 3905 ralxfrALT 4515 ontr2exmid 4574 reg2exmidlema 4583 0elsucexmid 4614 funcnvuni 5344 acexmidlemcase 5941 tfrlem1 6396 tfrlem9 6407 oawordriexmid 6558 nneneq 6956 diffitest 6986 xpfi 7031 ordiso2 7139 exmidontriimlem3 7337 prnmaxl 7603 prnminu 7604 cauappcvgprlemm 7760 cauappcvgprlemladdru 7771 cauappcvgprlemladdrl 7772 caucvgsrlemcl 7904 caucvgsrlemfv 7906 caucvgsr 7917 axcaucvglemres 8014 lbreu 9020 nnsub 9077 supinfneg 9718 infsupneg 9719 ublbneg 9736 fzrevral 10229 zsupcllemex 10375 seq3caopr3 10638 seq3id3 10671 recan 11453 cau3lem 11458 caubnd2 11461 climshftlemg 11646 subcn2 11655 climcau 11691 serf0 11696 sumdc 11702 isumrpcl 11838 clim2prod 11883 prodmodclem2 11921 ndvdssub 12274 dfgcd3 12364 dfgcd2 12368 coprmgcdb 12443 coprmdvds1 12446 nprm 12478 dvdsprm 12492 coprm 12499 sqrt2irr 12517 pcmpt 12699 pcmptdvds 12701 pcfac 12706 prmpwdvds 12711 lidrididd 13247 dfgrp2 13392 grpidinv2 13423 dfgrp3mlem 13463 issubg4m 13562 srgrz 13779 srglz 13780 srgisid 13781 rrgeq0i 14059 islmodd 14088 rmodislmod 14146 rnglidlmcl 14275 cnpnei 14724 lmss 14751 txlm 14784 psmet0 14832 metss 14999 metcnp3 15016 mulc1cncf 15094 cncfco 15096 2sqlem6 15630 2sqlem10 15635 bj-indsuc 15901 bj-inf2vnlem2 15944 trirec0 16020 iswomni0 16027 neap0mkv 16045 |
| Copyright terms: Public domain | W3C validator |