| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspcv | Unicode version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) |
| Ref | Expression |
|---|---|
| rspcv.1 |
|
| Ref | Expression |
|---|---|
| rspcv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 |
. 2
| |
| 2 | rspcv.1 |
. 2
| |
| 3 | 1, 2 | rspc 2871 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 |
| This theorem is referenced by: rspccv 2874 rspcva 2875 rspccva 2876 rspcdva 2882 rspc3v 2893 rr19.3v 2912 rr19.28v 2913 rspsbc 3081 rspc2vd 3162 intmin 3905 ralxfrALT 4514 ontr2exmid 4573 reg2exmidlema 4582 0elsucexmid 4613 funcnvuni 5343 acexmidlemcase 5939 tfrlem1 6394 tfrlem9 6405 oawordriexmid 6556 nneneq 6954 diffitest 6984 xpfi 7029 ordiso2 7137 exmidontriimlem3 7335 prnmaxl 7601 prnminu 7602 cauappcvgprlemm 7758 cauappcvgprlemladdru 7769 cauappcvgprlemladdrl 7770 caucvgsrlemcl 7902 caucvgsrlemfv 7904 caucvgsr 7915 axcaucvglemres 8012 lbreu 9018 nnsub 9075 supinfneg 9716 infsupneg 9717 ublbneg 9734 fzrevral 10227 zsupcllemex 10373 seq3caopr3 10636 seq3id3 10669 recan 11420 cau3lem 11425 caubnd2 11428 climshftlemg 11613 subcn2 11622 climcau 11658 serf0 11663 sumdc 11669 isumrpcl 11805 clim2prod 11850 prodmodclem2 11888 ndvdssub 12241 dfgcd3 12331 dfgcd2 12335 coprmgcdb 12410 coprmdvds1 12413 nprm 12445 dvdsprm 12459 coprm 12466 sqrt2irr 12484 pcmpt 12666 pcmptdvds 12668 pcfac 12673 prmpwdvds 12678 lidrididd 13214 dfgrp2 13359 grpidinv2 13390 dfgrp3mlem 13430 issubg4m 13529 srgrz 13746 srglz 13747 srgisid 13748 rrgeq0i 14026 islmodd 14055 rmodislmod 14113 rnglidlmcl 14242 cnpnei 14691 lmss 14718 txlm 14751 psmet0 14799 metss 14966 metcnp3 14983 mulc1cncf 15061 cncfco 15063 2sqlem6 15597 2sqlem10 15602 bj-indsuc 15864 bj-inf2vnlem2 15907 trirec0 15983 iswomni0 15990 neap0mkv 16008 |
| Copyright terms: Public domain | W3C validator |