| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspcv | Unicode version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) |
| Ref | Expression |
|---|---|
| rspcv.1 |
|
| Ref | Expression |
|---|---|
| rspcv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 |
. 2
| |
| 2 | rspcv.1 |
. 2
| |
| 3 | 1, 2 | rspc 2878 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 |
| This theorem is referenced by: rspccv 2881 rspcva 2882 rspccva 2883 rspcdva 2889 rspc3v 2900 rr19.3v 2919 rr19.28v 2920 rspsbc 3089 rspc2vd 3170 intmin 3919 ralxfrALT 4532 ontr2exmid 4591 reg2exmidlema 4600 0elsucexmid 4631 funcnvuni 5362 acexmidlemcase 5962 tfrlem1 6417 tfrlem9 6428 oawordriexmid 6579 nneneq 6979 diffitest 7010 xpfi 7055 ordiso2 7163 exmidontriimlem3 7366 prnmaxl 7636 prnminu 7637 cauappcvgprlemm 7793 cauappcvgprlemladdru 7804 cauappcvgprlemladdrl 7805 caucvgsrlemcl 7937 caucvgsrlemfv 7939 caucvgsr 7950 axcaucvglemres 8047 lbreu 9053 nnsub 9110 supinfneg 9751 infsupneg 9752 ublbneg 9769 fzrevral 10262 zsupcllemex 10410 seq3caopr3 10673 seq3id3 10706 wrdind 11213 wrd2ind 11214 reuccatpfxs1lem 11237 recan 11535 cau3lem 11540 caubnd2 11543 climshftlemg 11728 subcn2 11737 climcau 11773 serf0 11778 sumdc 11784 isumrpcl 11920 clim2prod 11965 prodmodclem2 12003 ndvdssub 12356 dfgcd3 12446 dfgcd2 12450 coprmgcdb 12525 coprmdvds1 12528 nprm 12560 dvdsprm 12574 coprm 12581 sqrt2irr 12599 pcmpt 12781 pcmptdvds 12783 pcfac 12788 prmpwdvds 12793 lidrididd 13329 dfgrp2 13474 grpidinv2 13505 dfgrp3mlem 13545 issubg4m 13644 srgrz 13861 srglz 13862 srgisid 13863 rrgeq0i 14141 islmodd 14170 rmodislmod 14228 rnglidlmcl 14357 cnpnei 14806 lmss 14833 txlm 14866 psmet0 14914 metss 15081 metcnp3 15098 mulc1cncf 15176 cncfco 15178 2sqlem6 15712 2sqlem10 15717 bj-indsuc 16063 bj-inf2vnlem2 16106 trirec0 16185 iswomni0 16192 neap0mkv 16210 |
| Copyright terms: Public domain | W3C validator |