| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspcv | Unicode version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) |
| Ref | Expression |
|---|---|
| rspcv.1 |
|
| Ref | Expression |
|---|---|
| rspcv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 |
. 2
| |
| 2 | rspcv.1 |
. 2
| |
| 3 | 1, 2 | rspc 2901 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 |
| This theorem is referenced by: rspccv 2904 rspcva 2905 rspccva 2906 rspcdva 2912 rspc3v 2923 rr19.3v 2942 rr19.28v 2943 rspsbc 3112 rspc2vd 3193 intmin 3943 ralxfrALT 4558 ontr2exmid 4617 reg2exmidlema 4626 0elsucexmid 4657 funcnvuni 5390 acexmidlemcase 5996 tfrlem1 6454 tfrlem9 6465 oawordriexmid 6616 nneneq 7018 diffitest 7049 xpfi 7094 ordiso2 7202 exmidontriimlem3 7405 prnmaxl 7675 prnminu 7676 cauappcvgprlemm 7832 cauappcvgprlemladdru 7843 cauappcvgprlemladdrl 7844 caucvgsrlemcl 7976 caucvgsrlemfv 7978 caucvgsr 7989 axcaucvglemres 8086 lbreu 9092 nnsub 9149 supinfneg 9790 infsupneg 9791 ublbneg 9808 fzrevral 10301 zsupcllemex 10450 seq3caopr3 10713 seq3id3 10746 wrdind 11254 wrd2ind 11255 reuccatpfxs1lem 11278 recan 11620 cau3lem 11625 caubnd2 11628 climshftlemg 11813 subcn2 11822 climcau 11858 serf0 11863 sumdc 11869 isumrpcl 12005 clim2prod 12050 prodmodclem2 12088 ndvdssub 12441 dfgcd3 12531 dfgcd2 12535 coprmgcdb 12610 coprmdvds1 12613 nprm 12645 dvdsprm 12659 coprm 12666 sqrt2irr 12684 pcmpt 12866 pcmptdvds 12868 pcfac 12873 prmpwdvds 12878 lidrididd 13415 dfgrp2 13560 grpidinv2 13591 dfgrp3mlem 13631 issubg4m 13730 srgrz 13947 srglz 13948 srgisid 13949 rrgeq0i 14228 islmodd 14257 rmodislmod 14315 rnglidlmcl 14444 cnpnei 14893 lmss 14920 txlm 14953 psmet0 15001 metss 15168 metcnp3 15185 mulc1cncf 15263 cncfco 15265 2sqlem6 15799 2sqlem10 15804 usgruspgrben 15984 wlk1walkdom 16070 bj-indsuc 16291 bj-inf2vnlem2 16334 trirec0 16412 iswomni0 16419 neap0mkv 16437 |
| Copyright terms: Public domain | W3C validator |