ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcalg Unicode version

Theorem sbcalg 3051
Description: Move universal quantifier in and out of class substitution. (Contributed by NM, 16-Jan-2004.)
Assertion
Ref Expression
sbcalg  |-  ( A  e.  V  ->  ( [. A  /  y ]. A. x ph  <->  A. x [. A  /  y ]. ph ) )
Distinct variable groups:    x, A    x, y
Allowed substitution hints:    ph( x, y)    A( y)    V( x, y)

Proof of Theorem sbcalg
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3001 . 2  |-  ( z  =  A  ->  ( [ z  /  y ] A. x ph  <->  [. A  / 
y ]. A. x ph ) )
2 dfsbcq2 3001 . . 3  |-  ( z  =  A  ->  ( [ z  /  y ] ph  <->  [. A  /  y ]. ph ) )
32albidv 1847 . 2  |-  ( z  =  A  ->  ( A. x [ z  / 
y ] ph  <->  A. x [. A  /  y ]. ph ) )
4 sbal 2028 . 2  |-  ( [ z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph )
51, 3, 4vtoclbg 2834 1  |-  ( A  e.  V  ->  ( [. A  /  y ]. A. x ph  <->  A. x [. A  /  y ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    = wceq 1373   [wsb 1785    e. wcel 2176   [.wsbc 2998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-sbc 2999
This theorem is referenced by:  sbcabel  3080  sbcssg  3569
  Copyright terms: Public domain W3C validator