| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylibd | Unicode version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylibd.1 |
|
| sylibd.2 |
|
| Ref | Expression |
|---|---|
| sylibd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibd.1 |
. 2
| |
| 2 | sylibd.2 |
. . 3
| |
| 3 | 2 | biimpd 144 |
. 2
|
| 4 | 1, 3 | syld 45 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3d 202 dvelimdf 2045 ceqsalt 2800 sbceqal 3058 csbiebt 3137 rspcsbela 3157 preqr1g 3813 repizf2 4214 copsexg 4296 onun2 4546 suc11g 4613 elrnrexdm 5732 isoselem 5902 riotass2 5939 oawordriexmid 6569 nnm00 6629 ecopovtrn 6732 ecopovtrng 6735 infglbti 7142 difinfsnlem 7216 enq0tr 7567 addnqprl 7662 addnqpru 7663 mulnqprl 7701 mulnqpru 7702 recexprlemss1l 7768 recexprlemss1u 7769 cauappcvgprlemdisj 7784 mulextsr1lem 7913 pitonn 7981 rereceu 8022 cnegexlem1 8267 ltadd2 8512 eqord2 8577 mulext 8707 mulgt1 8956 lt2halves 9293 addltmul 9294 nzadd 9445 ltsubnn0 9460 zextlt 9485 recnz 9486 zeo 9498 peano5uzti 9501 irradd 9787 irrmul 9788 xltneg 9978 xleadd1 10017 icc0r 10068 fznuz 10244 uznfz 10245 facndiv 10906 rennim 11388 abs00ap 11448 absle 11475 cau3lem 11500 caubnd2 11503 climshft 11690 subcn2 11697 mulcn2 11698 serf0 11738 cvgratnnlemnexp 11910 cvgratnnlemmn 11911 efieq1re 12158 moddvds 12185 dvdsssfz1 12238 nn0seqcvgd 12438 algcvgblem 12446 eucalglt 12454 lcmgcdlem 12474 rpmul 12495 divgcdcoprm0 12498 isprm6 12544 rpexp 12550 eulerthlema 12627 eulerthlemh 12628 prmdiv 12632 pcprendvds2 12689 pcz 12730 pcprmpw 12732 pcadd2 12739 pcfac 12748 expnprm 12751 imasgrp2 13521 issubg4m 13604 znidomb 14495 tgss3 14625 cnpnei 14766 cnntr 14772 hmeoopn 14858 hmeocld 14859 mulcncflem 15154 plycolemc 15305 sincosq3sgn 15375 sincosq4sgn 15376 perfect1 15545 lgsdir2lem4 15583 lgsne0 15590 lgsquad2lem2 15634 2sqlem8a 15674 bj-peano4 16029 iswomni0 16131 |
| Copyright terms: Public domain | W3C validator |