| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylibd | Unicode version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylibd.1 |
|
| sylibd.2 |
|
| Ref | Expression |
|---|---|
| sylibd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibd.1 |
. 2
| |
| 2 | sylibd.2 |
. . 3
| |
| 3 | 2 | biimpd 144 |
. 2
|
| 4 | 1, 3 | syld 45 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3d 202 dvelimdf 2067 ceqsalt 2826 sbceqal 3084 csbiebt 3164 rspcsbela 3184 preqr1g 3843 repizf2 4245 copsexg 4329 onun2 4581 suc11g 4648 elrnrexdm 5773 isoselem 5943 riotass2 5982 oawordriexmid 6614 nnm00 6674 ecopovtrn 6777 ecopovtrng 6780 infglbti 7188 difinfsnlem 7262 enq0tr 7617 addnqprl 7712 addnqpru 7713 mulnqprl 7751 mulnqpru 7752 recexprlemss1l 7818 recexprlemss1u 7819 cauappcvgprlemdisj 7834 mulextsr1lem 7963 pitonn 8031 rereceu 8072 cnegexlem1 8317 ltadd2 8562 eqord2 8627 mulext 8757 mulgt1 9006 lt2halves 9343 addltmul 9344 nzadd 9495 ltsubnn0 9510 zextlt 9535 recnz 9536 zeo 9548 peano5uzti 9551 irradd 9837 irrmul 9838 xltneg 10028 xleadd1 10067 icc0r 10118 fznuz 10294 uznfz 10295 facndiv 10956 swrdccatin2 11256 swrdccatin2d 11271 rennim 11508 abs00ap 11568 absle 11595 cau3lem 11620 caubnd2 11623 climshft 11810 subcn2 11817 mulcn2 11818 serf0 11858 cvgratnnlemnexp 12030 cvgratnnlemmn 12031 efieq1re 12278 moddvds 12305 dvdsssfz1 12358 nn0seqcvgd 12558 algcvgblem 12566 eucalglt 12574 lcmgcdlem 12594 rpmul 12615 divgcdcoprm0 12618 isprm6 12664 rpexp 12670 eulerthlema 12747 eulerthlemh 12748 prmdiv 12752 pcprendvds2 12809 pcz 12850 pcprmpw 12852 pcadd2 12859 pcfac 12868 expnprm 12871 imasgrp2 13642 issubg4m 13725 znidomb 14616 tgss3 14746 cnpnei 14887 cnntr 14893 hmeoopn 14979 hmeocld 14980 mulcncflem 15275 plycolemc 15426 sincosq3sgn 15496 sincosq4sgn 15497 perfect1 15666 lgsdir2lem4 15704 lgsne0 15711 lgsquad2lem2 15755 2sqlem8a 15795 bj-peano4 16276 iswomni0 16378 |
| Copyright terms: Public domain | W3C validator |