| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylibd | Unicode version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylibd.1 |
|
| sylibd.2 |
|
| Ref | Expression |
|---|---|
| sylibd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibd.1 |
. 2
| |
| 2 | sylibd.2 |
. . 3
| |
| 3 | 2 | biimpd 144 |
. 2
|
| 4 | 1, 3 | syld 45 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3d 202 dvelimdf 2043 ceqsalt 2797 sbceqal 3053 csbiebt 3132 rspcsbela 3152 preqr1g 3806 repizf2 4205 copsexg 4287 onun2 4537 suc11g 4604 elrnrexdm 5718 isoselem 5888 riotass2 5925 oawordriexmid 6555 nnm00 6615 ecopovtrn 6718 ecopovtrng 6721 infglbti 7126 difinfsnlem 7200 enq0tr 7546 addnqprl 7641 addnqpru 7642 mulnqprl 7680 mulnqpru 7681 recexprlemss1l 7747 recexprlemss1u 7748 cauappcvgprlemdisj 7763 mulextsr1lem 7892 pitonn 7960 rereceu 8001 cnegexlem1 8246 ltadd2 8491 eqord2 8556 mulext 8686 mulgt1 8935 lt2halves 9272 addltmul 9273 nzadd 9424 ltsubnn0 9439 zextlt 9464 recnz 9465 zeo 9477 peano5uzti 9480 irradd 9766 irrmul 9767 xltneg 9957 xleadd1 9996 icc0r 10047 fznuz 10223 uznfz 10224 facndiv 10882 rennim 11255 abs00ap 11315 absle 11342 cau3lem 11367 caubnd2 11370 climshft 11557 subcn2 11564 mulcn2 11565 serf0 11605 cvgratnnlemnexp 11777 cvgratnnlemmn 11778 efieq1re 12025 moddvds 12052 dvdsssfz1 12105 nn0seqcvgd 12305 algcvgblem 12313 eucalglt 12321 lcmgcdlem 12341 rpmul 12362 divgcdcoprm0 12365 isprm6 12411 rpexp 12417 eulerthlema 12494 eulerthlemh 12495 prmdiv 12499 pcprendvds2 12556 pcz 12597 pcprmpw 12599 pcadd2 12606 pcfac 12615 expnprm 12618 imasgrp2 13388 issubg4m 13471 znidomb 14362 tgss3 14492 cnpnei 14633 cnntr 14639 hmeoopn 14725 hmeocld 14726 mulcncflem 15021 plycolemc 15172 sincosq3sgn 15242 sincosq4sgn 15243 perfect1 15412 lgsdir2lem4 15450 lgsne0 15457 lgsquad2lem2 15501 2sqlem8a 15541 bj-peano4 15824 iswomni0 15923 |
| Copyright terms: Public domain | W3C validator |