| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylibd | Unicode version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylibd.1 |
|
| sylibd.2 |
|
| Ref | Expression |
|---|---|
| sylibd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibd.1 |
. 2
| |
| 2 | sylibd.2 |
. . 3
| |
| 3 | 2 | biimpd 144 |
. 2
|
| 4 | 1, 3 | syld 45 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3d 202 dvelimdf 2035 ceqsalt 2789 sbceqal 3045 csbiebt 3124 rspcsbela 3144 preqr1g 3796 repizf2 4195 copsexg 4277 onun2 4526 suc11g 4593 elrnrexdm 5701 isoselem 5867 riotass2 5904 oawordriexmid 6528 nnm00 6588 ecopovtrn 6691 ecopovtrng 6694 infglbti 7091 difinfsnlem 7165 enq0tr 7501 addnqprl 7596 addnqpru 7597 mulnqprl 7635 mulnqpru 7636 recexprlemss1l 7702 recexprlemss1u 7703 cauappcvgprlemdisj 7718 mulextsr1lem 7847 pitonn 7915 rereceu 7956 cnegexlem1 8201 ltadd2 8446 eqord2 8511 mulext 8641 mulgt1 8890 lt2halves 9227 addltmul 9228 nzadd 9378 ltsubnn0 9393 zextlt 9418 recnz 9419 zeo 9431 peano5uzti 9434 irradd 9720 irrmul 9721 xltneg 9911 xleadd1 9950 icc0r 10001 fznuz 10177 uznfz 10178 facndiv 10831 rennim 11167 abs00ap 11227 absle 11254 cau3lem 11279 caubnd2 11282 climshft 11469 subcn2 11476 mulcn2 11477 serf0 11517 cvgratnnlemnexp 11689 cvgratnnlemmn 11690 efieq1re 11937 moddvds 11964 dvdsssfz1 12017 nn0seqcvgd 12209 algcvgblem 12217 eucalglt 12225 lcmgcdlem 12245 rpmul 12266 divgcdcoprm0 12269 isprm6 12315 rpexp 12321 eulerthlema 12398 eulerthlemh 12399 prmdiv 12403 pcprendvds2 12460 pcz 12501 pcprmpw 12503 pcadd2 12510 pcfac 12519 expnprm 12522 imasgrp2 13240 issubg4m 13323 znidomb 14214 tgss3 14314 cnpnei 14455 cnntr 14461 hmeoopn 14547 hmeocld 14548 mulcncflem 14843 plycolemc 14994 sincosq3sgn 15064 sincosq4sgn 15065 perfect1 15234 lgsdir2lem4 15272 lgsne0 15279 lgsquad2lem2 15323 2sqlem8a 15363 bj-peano4 15601 iswomni0 15695 |
| Copyright terms: Public domain | W3C validator |