![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylibd | Unicode version |
Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
sylibd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sylibd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylibd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylibd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sylibd.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | biimpd 144 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | syld 45 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3imtr3d 202 dvelimdf 2032 ceqsalt 2786 sbceqal 3041 csbiebt 3120 rspcsbela 3140 preqr1g 3792 repizf2 4191 copsexg 4273 onun2 4522 suc11g 4589 elrnrexdm 5697 isoselem 5863 riotass2 5900 oawordriexmid 6523 nnm00 6583 ecopovtrn 6686 ecopovtrng 6689 infglbti 7084 difinfsnlem 7158 enq0tr 7494 addnqprl 7589 addnqpru 7590 mulnqprl 7628 mulnqpru 7629 recexprlemss1l 7695 recexprlemss1u 7696 cauappcvgprlemdisj 7711 mulextsr1lem 7840 pitonn 7908 rereceu 7949 cnegexlem1 8194 ltadd2 8438 eqord2 8503 mulext 8633 mulgt1 8882 lt2halves 9218 addltmul 9219 nzadd 9369 ltsubnn0 9384 zextlt 9409 recnz 9410 zeo 9422 peano5uzti 9425 irradd 9711 irrmul 9712 xltneg 9902 xleadd1 9941 icc0r 9992 fznuz 10168 uznfz 10169 facndiv 10810 rennim 11146 abs00ap 11206 absle 11233 cau3lem 11258 caubnd2 11261 climshft 11447 subcn2 11454 mulcn2 11455 serf0 11495 cvgratnnlemnexp 11667 cvgratnnlemmn 11668 efieq1re 11915 moddvds 11942 dvdsssfz1 11994 nn0seqcvgd 12179 algcvgblem 12187 eucalglt 12195 lcmgcdlem 12215 rpmul 12236 divgcdcoprm0 12239 isprm6 12285 rpexp 12291 eulerthlema 12368 eulerthlemh 12369 prmdiv 12373 pcprendvds2 12429 pcz 12470 pcprmpw 12472 pcadd2 12479 pcfac 12488 expnprm 12491 imasgrp2 13180 issubg4m 13263 znidomb 14146 tgss3 14246 cnpnei 14387 cnntr 14393 hmeoopn 14479 hmeocld 14480 mulcncflem 14761 sincosq3sgn 14963 sincosq4sgn 14964 lgsdir2lem4 15147 lgsne0 15154 2sqlem8a 15209 bj-peano4 15447 iswomni0 15541 |
Copyright terms: Public domain | W3C validator |