| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylibd | Unicode version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylibd.1 |
|
| sylibd.2 |
|
| Ref | Expression |
|---|---|
| sylibd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibd.1 |
. 2
| |
| 2 | sylibd.2 |
. . 3
| |
| 3 | 2 | biimpd 144 |
. 2
|
| 4 | 1, 3 | syld 45 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3d 202 dvelimdf 2035 ceqsalt 2789 sbceqal 3045 csbiebt 3124 rspcsbela 3144 preqr1g 3797 repizf2 4196 copsexg 4278 onun2 4527 suc11g 4594 elrnrexdm 5704 isoselem 5870 riotass2 5907 oawordriexmid 6537 nnm00 6597 ecopovtrn 6700 ecopovtrng 6703 infglbti 7100 difinfsnlem 7174 enq0tr 7518 addnqprl 7613 addnqpru 7614 mulnqprl 7652 mulnqpru 7653 recexprlemss1l 7719 recexprlemss1u 7720 cauappcvgprlemdisj 7735 mulextsr1lem 7864 pitonn 7932 rereceu 7973 cnegexlem1 8218 ltadd2 8463 eqord2 8528 mulext 8658 mulgt1 8907 lt2halves 9244 addltmul 9245 nzadd 9395 ltsubnn0 9410 zextlt 9435 recnz 9436 zeo 9448 peano5uzti 9451 irradd 9737 irrmul 9738 xltneg 9928 xleadd1 9967 icc0r 10018 fznuz 10194 uznfz 10195 facndiv 10848 rennim 11184 abs00ap 11244 absle 11271 cau3lem 11296 caubnd2 11299 climshft 11486 subcn2 11493 mulcn2 11494 serf0 11534 cvgratnnlemnexp 11706 cvgratnnlemmn 11707 efieq1re 11954 moddvds 11981 dvdsssfz1 12034 nn0seqcvgd 12234 algcvgblem 12242 eucalglt 12250 lcmgcdlem 12270 rpmul 12291 divgcdcoprm0 12294 isprm6 12340 rpexp 12346 eulerthlema 12423 eulerthlemh 12424 prmdiv 12428 pcprendvds2 12485 pcz 12526 pcprmpw 12528 pcadd2 12535 pcfac 12544 expnprm 12547 imasgrp2 13316 issubg4m 13399 znidomb 14290 tgss3 14398 cnpnei 14539 cnntr 14545 hmeoopn 14631 hmeocld 14632 mulcncflem 14927 plycolemc 15078 sincosq3sgn 15148 sincosq4sgn 15149 perfect1 15318 lgsdir2lem4 15356 lgsne0 15363 lgsquad2lem2 15407 2sqlem8a 15447 bj-peano4 15685 iswomni0 15782 |
| Copyright terms: Public domain | W3C validator |