![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylibd | Unicode version |
Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
sylibd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sylibd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylibd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylibd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sylibd.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | biimpd 143 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | syld 45 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3imtr3d 201 dvelimdf 1952 ceqsalt 2667 sbceqal 2916 csbiebt 2989 rspcsbela 3009 preqr1g 3640 repizf2 4026 copsexg 4104 onun2 4344 suc11g 4410 elrnrexdm 5491 isoselem 5653 riotass2 5688 oawordriexmid 6296 nnm00 6355 ecopovtrn 6456 ecopovtrng 6459 infglbti 6827 difinfsnlem 6899 enq0tr 7143 addnqprl 7238 addnqpru 7239 mulnqprl 7277 mulnqpru 7278 recexprlemss1l 7344 recexprlemss1u 7345 cauappcvgprlemdisj 7360 mulextsr1lem 7475 pitonn 7535 rereceu 7574 cnegexlem1 7808 ltadd2 8048 eqord2 8113 mulext 8242 mulgt1 8479 lt2halves 8807 addltmul 8808 nzadd 8958 zextlt 8995 recnz 8996 zeo 9008 peano5uzti 9011 irradd 9288 irrmul 9289 xltneg 9460 xleadd1 9499 icc0r 9550 fznuz 9723 uznfz 9724 facndiv 10326 rennim 10614 abs00ap 10674 absle 10701 cau3lem 10726 caubnd2 10729 climshft 10912 subcn2 10919 mulcn2 10920 serf0 10960 cvgratnnlemnexp 11132 cvgratnnlemmn 11133 efieq1re 11275 moddvds 11297 dvdsssfz1 11345 nn0seqcvgd 11515 algcvgblem 11523 eucalglt 11531 lcmgcdlem 11551 rpmul 11572 divgcdcoprm0 11575 isprm6 11618 rpexp 11624 tgss3 12029 cnpnei 12169 cnntr 12175 mulcncflem 12502 bj-peano4 12738 |
Copyright terms: Public domain | W3C validator |