| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylibd | Unicode version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylibd.1 |
|
| sylibd.2 |
|
| Ref | Expression |
|---|---|
| sylibd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibd.1 |
. 2
| |
| 2 | sylibd.2 |
. . 3
| |
| 3 | 2 | biimpd 144 |
. 2
|
| 4 | 1, 3 | syld 45 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3d 202 dvelimdf 2043 ceqsalt 2797 sbceqal 3053 csbiebt 3132 rspcsbela 3152 preqr1g 3806 repizf2 4205 copsexg 4287 onun2 4537 suc11g 4604 elrnrexdm 5718 isoselem 5888 riotass2 5925 oawordriexmid 6555 nnm00 6615 ecopovtrn 6718 ecopovtrng 6721 infglbti 7126 difinfsnlem 7200 enq0tr 7546 addnqprl 7641 addnqpru 7642 mulnqprl 7680 mulnqpru 7681 recexprlemss1l 7747 recexprlemss1u 7748 cauappcvgprlemdisj 7763 mulextsr1lem 7892 pitonn 7960 rereceu 8001 cnegexlem1 8246 ltadd2 8491 eqord2 8556 mulext 8686 mulgt1 8935 lt2halves 9272 addltmul 9273 nzadd 9424 ltsubnn0 9439 zextlt 9464 recnz 9465 zeo 9477 peano5uzti 9480 irradd 9766 irrmul 9767 xltneg 9957 xleadd1 9996 icc0r 10047 fznuz 10223 uznfz 10224 facndiv 10882 rennim 11284 abs00ap 11344 absle 11371 cau3lem 11396 caubnd2 11399 climshft 11586 subcn2 11593 mulcn2 11594 serf0 11634 cvgratnnlemnexp 11806 cvgratnnlemmn 11807 efieq1re 12054 moddvds 12081 dvdsssfz1 12134 nn0seqcvgd 12334 algcvgblem 12342 eucalglt 12350 lcmgcdlem 12370 rpmul 12391 divgcdcoprm0 12394 isprm6 12440 rpexp 12446 eulerthlema 12523 eulerthlemh 12524 prmdiv 12528 pcprendvds2 12585 pcz 12626 pcprmpw 12628 pcadd2 12635 pcfac 12644 expnprm 12647 imasgrp2 13417 issubg4m 13500 znidomb 14391 tgss3 14521 cnpnei 14662 cnntr 14668 hmeoopn 14754 hmeocld 14755 mulcncflem 15050 plycolemc 15201 sincosq3sgn 15271 sincosq4sgn 15272 perfect1 15441 lgsdir2lem4 15479 lgsne0 15486 lgsquad2lem2 15530 2sqlem8a 15570 bj-peano4 15853 iswomni0 15952 |
| Copyright terms: Public domain | W3C validator |