Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcfung | Unicode version |
Description: Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
Ref | Expression |
---|---|
sbcfung |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcan 2997 | . . 3 | |
2 | sbcrel 4697 | . . . 4 | |
3 | sbcal 3006 | . . . . 5 | |
4 | sbcal 3006 | . . . . . . 7 | |
5 | sbcal 3006 | . . . . . . . . 9 | |
6 | sbcimg 2996 | . . . . . . . . . . 11 | |
7 | sbcan 2997 | . . . . . . . . . . . . 13 | |
8 | sbcbrg 4043 | . . . . . . . . . . . . . . 15 | |
9 | csbconstg 3063 | . . . . . . . . . . . . . . . 16 | |
10 | csbconstg 3063 | . . . . . . . . . . . . . . . 16 | |
11 | 9, 10 | breq12d 4002 | . . . . . . . . . . . . . . 15 |
12 | 8, 11 | bitrd 187 | . . . . . . . . . . . . . 14 |
13 | sbcbrg 4043 | . . . . . . . . . . . . . . 15 | |
14 | csbconstg 3063 | . . . . . . . . . . . . . . . 16 | |
15 | 9, 14 | breq12d 4002 | . . . . . . . . . . . . . . 15 |
16 | 13, 15 | bitrd 187 | . . . . . . . . . . . . . 14 |
17 | 12, 16 | anbi12d 470 | . . . . . . . . . . . . 13 |
18 | 7, 17 | syl5bb 191 | . . . . . . . . . . . 12 |
19 | sbcg 3024 | . . . . . . . . . . . 12 | |
20 | 18, 19 | imbi12d 233 | . . . . . . . . . . 11 |
21 | 6, 20 | bitrd 187 | . . . . . . . . . 10 |
22 | 21 | albidv 1817 | . . . . . . . . 9 |
23 | 5, 22 | syl5bb 191 | . . . . . . . 8 |
24 | 23 | albidv 1817 | . . . . . . 7 |
25 | 4, 24 | syl5bb 191 | . . . . . 6 |
26 | 25 | albidv 1817 | . . . . 5 |
27 | 3, 26 | syl5bb 191 | . . . 4 |
28 | 2, 27 | anbi12d 470 | . . 3 |
29 | 1, 28 | syl5bb 191 | . 2 |
30 | dffun2 5208 | . . 3 | |
31 | 30 | sbcbii 3014 | . 2 |
32 | dffun2 5208 | . 2 | |
33 | 29, 31, 32 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wcel 2141 wsbc 2955 csb 3049 class class class wbr 3989 wrel 4616 wfun 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-rel 4618 df-cnv 4619 df-co 4620 df-fun 5200 |
This theorem is referenced by: sbcfng 5345 |
Copyright terms: Public domain | W3C validator |