Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcfung | Unicode version |
Description: Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
Ref | Expression |
---|---|
sbcfung |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcan 2993 | . . 3 | |
2 | sbcrel 4690 | . . . 4 | |
3 | sbcal 3002 | . . . . 5 | |
4 | sbcal 3002 | . . . . . . 7 | |
5 | sbcal 3002 | . . . . . . . . 9 | |
6 | sbcimg 2992 | . . . . . . . . . . 11 | |
7 | sbcan 2993 | . . . . . . . . . . . . 13 | |
8 | sbcbrg 4036 | . . . . . . . . . . . . . . 15 | |
9 | csbconstg 3059 | . . . . . . . . . . . . . . . 16 | |
10 | csbconstg 3059 | . . . . . . . . . . . . . . . 16 | |
11 | 9, 10 | breq12d 3995 | . . . . . . . . . . . . . . 15 |
12 | 8, 11 | bitrd 187 | . . . . . . . . . . . . . 14 |
13 | sbcbrg 4036 | . . . . . . . . . . . . . . 15 | |
14 | csbconstg 3059 | . . . . . . . . . . . . . . . 16 | |
15 | 9, 14 | breq12d 3995 | . . . . . . . . . . . . . . 15 |
16 | 13, 15 | bitrd 187 | . . . . . . . . . . . . . 14 |
17 | 12, 16 | anbi12d 465 | . . . . . . . . . . . . 13 |
18 | 7, 17 | syl5bb 191 | . . . . . . . . . . . 12 |
19 | sbcg 3020 | . . . . . . . . . . . 12 | |
20 | 18, 19 | imbi12d 233 | . . . . . . . . . . 11 |
21 | 6, 20 | bitrd 187 | . . . . . . . . . 10 |
22 | 21 | albidv 1812 | . . . . . . . . 9 |
23 | 5, 22 | syl5bb 191 | . . . . . . . 8 |
24 | 23 | albidv 1812 | . . . . . . 7 |
25 | 4, 24 | syl5bb 191 | . . . . . 6 |
26 | 25 | albidv 1812 | . . . . 5 |
27 | 3, 26 | syl5bb 191 | . . . 4 |
28 | 2, 27 | anbi12d 465 | . . 3 |
29 | 1, 28 | syl5bb 191 | . 2 |
30 | dffun2 5198 | . . 3 | |
31 | 30 | sbcbii 3010 | . 2 |
32 | dffun2 5198 | . 2 | |
33 | 29, 31, 32 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wcel 2136 wsbc 2951 csb 3045 class class class wbr 3982 wrel 4609 wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-rel 4611 df-cnv 4612 df-co 4613 df-fun 5190 |
This theorem is referenced by: sbcfng 5335 |
Copyright terms: Public domain | W3C validator |