ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcfung Unicode version

Theorem sbcfung 5236
Description: Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
sbcfung  |-  ( A  e.  V  ->  ( [. A  /  x ]. Fun  F  <->  Fun  [_ A  /  x ]_ F ) )

Proof of Theorem sbcfung
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbcan 3005 . . 3  |-  ( [. A  /  x ]. ( Rel  F  /\  A. w A. y A. z ( ( w F y  /\  w F z )  ->  y  =  z ) )  <->  ( [. A  /  x ]. Rel  F  /\  [. A  /  x ]. A. w A. y A. z ( ( w F y  /\  w F z )  -> 
y  =  z ) ) )
2 sbcrel 4709 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. Rel  F  <->  Rel  [_ A  /  x ]_ F ) )
3 sbcal 3014 . . . . 5  |-  ( [. A  /  x ]. A. w A. y A. z
( ( w F y  /\  w F z )  ->  y  =  z )  <->  A. w [. A  /  x ]. A. y A. z
( ( w F y  /\  w F z )  ->  y  =  z ) )
4 sbcal 3014 . . . . . . 7  |-  ( [. A  /  x ]. A. y A. z ( ( w F y  /\  w F z )  -> 
y  =  z )  <->  A. y [. A  /  x ]. A. z ( ( w F y  /\  w F z )  ->  y  =  z ) )
5 sbcal 3014 . . . . . . . . 9  |-  ( [. A  /  x ]. A. z ( ( w F y  /\  w F z )  -> 
y  =  z )  <->  A. z [. A  /  x ]. ( ( w F y  /\  w F z )  -> 
y  =  z ) )
6 sbcimg 3004 . . . . . . . . . . 11  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ( w F y  /\  w F z )  ->  y  =  z )  <->  ( [. A  /  x ]. (
w F y  /\  w F z )  ->  [. A  /  x ]. y  =  z
) ) )
7 sbcan 3005 . . . . . . . . . . . . 13  |-  ( [. A  /  x ]. (
w F y  /\  w F z )  <->  ( [. A  /  x ]. w F y  /\  [. A  /  x ]. w F z ) )
8 sbcbrg 4054 . . . . . . . . . . . . . . 15  |-  ( A  e.  V  ->  ( [. A  /  x ]. w F y  <->  [_ A  /  x ]_ w [_ A  /  x ]_ F [_ A  /  x ]_ y
) )
9 csbconstg 3071 . . . . . . . . . . . . . . . 16  |-  ( A  e.  V  ->  [_ A  /  x ]_ w  =  w )
10 csbconstg 3071 . . . . . . . . . . . . . . . 16  |-  ( A  e.  V  ->  [_ A  /  x ]_ y  =  y )
119, 10breq12d 4013 . . . . . . . . . . . . . . 15  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ w [_ A  /  x ]_ F [_ A  /  x ]_ y  <->  w [_ A  /  x ]_ F
y ) )
128, 11bitrd 188 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  ( [. A  /  x ]. w F y  <->  w [_ A  /  x ]_ F
y ) )
13 sbcbrg 4054 . . . . . . . . . . . . . . 15  |-  ( A  e.  V  ->  ( [. A  /  x ]. w F z  <->  [_ A  /  x ]_ w [_ A  /  x ]_ F [_ A  /  x ]_ z
) )
14 csbconstg 3071 . . . . . . . . . . . . . . . 16  |-  ( A  e.  V  ->  [_ A  /  x ]_ z  =  z )
159, 14breq12d 4013 . . . . . . . . . . . . . . 15  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ w [_ A  /  x ]_ F [_ A  /  x ]_ z  <->  w [_ A  /  x ]_ F
z ) )
1613, 15bitrd 188 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  ( [. A  /  x ]. w F z  <->  w [_ A  /  x ]_ F
z ) )
1712, 16anbi12d 473 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  (
( [. A  /  x ]. w F y  /\  [. A  /  x ]. w F z )  <->  ( w [_ A  /  x ]_ F y  /\  w [_ A  /  x ]_ F z ) ) )
187, 17bitrid 192 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( w F y  /\  w F z )  <->  ( w [_ A  /  x ]_ F
y  /\  w [_ A  /  x ]_ F
z ) ) )
19 sbcg 3032 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  ( [. A  /  x ]. y  =  z  <->  y  =  z ) )
2018, 19imbi12d 234 . . . . . . . . . . 11  |-  ( A  e.  V  ->  (
( [. A  /  x ]. ( w F y  /\  w F z )  ->  [. A  /  x ]. y  =  z )  <->  ( ( w
[_ A  /  x ]_ F y  /\  w [_ A  /  x ]_ F z )  -> 
y  =  z ) ) )
216, 20bitrd 188 . . . . . . . . . 10  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ( w F y  /\  w F z )  ->  y  =  z )  <->  ( (
w [_ A  /  x ]_ F y  /\  w [_ A  /  x ]_ F z )  -> 
y  =  z ) ) )
2221albidv 1824 . . . . . . . . 9  |-  ( A  e.  V  ->  ( A. z [. A  /  x ]. ( ( w F y  /\  w F z )  -> 
y  =  z )  <->  A. z ( ( w
[_ A  /  x ]_ F y  /\  w [_ A  /  x ]_ F z )  -> 
y  =  z ) ) )
235, 22bitrid 192 . . . . . . . 8  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. z ( ( w F y  /\  w F z )  -> 
y  =  z )  <->  A. z ( ( w
[_ A  /  x ]_ F y  /\  w [_ A  /  x ]_ F z )  -> 
y  =  z ) ) )
2423albidv 1824 . . . . . . 7  |-  ( A  e.  V  ->  ( A. y [. A  /  x ]. A. z ( ( w F y  /\  w F z )  ->  y  =  z )  <->  A. y A. z ( ( w
[_ A  /  x ]_ F y  /\  w [_ A  /  x ]_ F z )  -> 
y  =  z ) ) )
254, 24bitrid 192 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. y A. z
( ( w F y  /\  w F z )  ->  y  =  z )  <->  A. y A. z ( ( w
[_ A  /  x ]_ F y  /\  w [_ A  /  x ]_ F z )  -> 
y  =  z ) ) )
2625albidv 1824 . . . . 5  |-  ( A  e.  V  ->  ( A. w [. A  /  x ]. A. y A. z ( ( w F y  /\  w F z )  -> 
y  =  z )  <->  A. w A. y A. z ( ( w
[_ A  /  x ]_ F y  /\  w [_ A  /  x ]_ F z )  -> 
y  =  z ) ) )
273, 26bitrid 192 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. w A. y A. z ( ( w F y  /\  w F z )  -> 
y  =  z )  <->  A. w A. y A. z ( ( w
[_ A  /  x ]_ F y  /\  w [_ A  /  x ]_ F z )  -> 
y  =  z ) ) )
282, 27anbi12d 473 . . 3  |-  ( A  e.  V  ->  (
( [. A  /  x ]. Rel  F  /\  [. A  /  x ]. A. w A. y A. z ( ( w F y  /\  w F z )  ->  y  =  z ) )  <->  ( Rel  [_ A  /  x ]_ F  /\  A. w A. y A. z ( ( w [_ A  /  x ]_ F y  /\  w [_ A  /  x ]_ F z )  -> 
y  =  z ) ) ) )
291, 28bitrid 192 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( Rel  F  /\  A. w A. y A. z ( ( w F y  /\  w F z )  -> 
y  =  z ) )  <->  ( Rel  [_ A  /  x ]_ F  /\  A. w A. y A. z ( ( w
[_ A  /  x ]_ F y  /\  w [_ A  /  x ]_ F z )  -> 
y  =  z ) ) ) )
30 dffun2 5222 . . 3  |-  ( Fun 
F  <->  ( Rel  F  /\  A. w A. y A. z ( ( w F y  /\  w F z )  -> 
y  =  z ) ) )
3130sbcbii 3022 . 2  |-  ( [. A  /  x ]. Fun  F  <->  [. A  /  x ]. ( Rel  F  /\  A. w A. y A. z ( ( w F y  /\  w F z )  -> 
y  =  z ) ) )
32 dffun2 5222 . 2  |-  ( Fun  [_ A  /  x ]_ F  <->  ( Rel  [_ A  /  x ]_ F  /\  A. w A. y A. z ( ( w
[_ A  /  x ]_ F y  /\  w [_ A  /  x ]_ F z )  -> 
y  =  z ) ) )
3329, 31, 323bitr4g 223 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. Fun  F  <->  Fun  [_ A  /  x ]_ F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351    e. wcel 2148   [.wsbc 2962   [_csb 3057   class class class wbr 4000   Rel wrel 4628   Fun wfun 5206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-br 4001  df-opab 4062  df-id 4290  df-rel 4630  df-cnv 4631  df-co 4632  df-fun 5214
This theorem is referenced by:  sbcfng  5359
  Copyright terms: Public domain W3C validator