| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcfung | Unicode version | ||
| Description: Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
| Ref | Expression |
|---|---|
| sbcfung |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcan 3041 |
. . 3
| |
| 2 | sbcrel 4761 |
. . . 4
| |
| 3 | sbcal 3050 |
. . . . 5
| |
| 4 | sbcal 3050 |
. . . . . . 7
| |
| 5 | sbcal 3050 |
. . . . . . . . 9
| |
| 6 | sbcimg 3040 |
. . . . . . . . . . 11
| |
| 7 | sbcan 3041 |
. . . . . . . . . . . . 13
| |
| 8 | sbcbrg 4098 |
. . . . . . . . . . . . . . 15
| |
| 9 | csbconstg 3107 |
. . . . . . . . . . . . . . . 16
| |
| 10 | csbconstg 3107 |
. . . . . . . . . . . . . . . 16
| |
| 11 | 9, 10 | breq12d 4057 |
. . . . . . . . . . . . . . 15
|
| 12 | 8, 11 | bitrd 188 |
. . . . . . . . . . . . . 14
|
| 13 | sbcbrg 4098 |
. . . . . . . . . . . . . . 15
| |
| 14 | csbconstg 3107 |
. . . . . . . . . . . . . . . 16
| |
| 15 | 9, 14 | breq12d 4057 |
. . . . . . . . . . . . . . 15
|
| 16 | 13, 15 | bitrd 188 |
. . . . . . . . . . . . . 14
|
| 17 | 12, 16 | anbi12d 473 |
. . . . . . . . . . . . 13
|
| 18 | 7, 17 | bitrid 192 |
. . . . . . . . . . . 12
|
| 19 | sbcg 3068 |
. . . . . . . . . . . 12
| |
| 20 | 18, 19 | imbi12d 234 |
. . . . . . . . . . 11
|
| 21 | 6, 20 | bitrd 188 |
. . . . . . . . . 10
|
| 22 | 21 | albidv 1847 |
. . . . . . . . 9
|
| 23 | 5, 22 | bitrid 192 |
. . . . . . . 8
|
| 24 | 23 | albidv 1847 |
. . . . . . 7
|
| 25 | 4, 24 | bitrid 192 |
. . . . . 6
|
| 26 | 25 | albidv 1847 |
. . . . 5
|
| 27 | 3, 26 | bitrid 192 |
. . . 4
|
| 28 | 2, 27 | anbi12d 473 |
. . 3
|
| 29 | 1, 28 | bitrid 192 |
. 2
|
| 30 | dffun2 5281 |
. . 3
| |
| 31 | 30 | sbcbii 3058 |
. 2
|
| 32 | dffun2 5281 |
. 2
| |
| 33 | 29, 31, 32 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-id 4340 df-rel 4682 df-cnv 4683 df-co 4684 df-fun 5273 |
| This theorem is referenced by: sbcfng 5423 |
| Copyright terms: Public domain | W3C validator |