ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbunig Unicode version

Theorem csbunig 3752
Description: Distribute proper substitution through the union of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbunig  |-  ( A  e.  V  ->  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B )

Proof of Theorem csbunig
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabg 3066 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) } )
2 sbcexg 2967 . . . . 5  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B
) ) )
3 sbcang 2956 . . . . . . 7  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B
)  <->  ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B ) ) )
4 sbcg 2982 . . . . . . . 8  |-  ( A  e.  V  ->  ( [. A  /  x ]. z  e.  y  <->  z  e.  y ) )
5 sbcel2g 3028 . . . . . . . 8  |-  ( A  e.  V  ->  ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B ) )
64, 5anbi12d 465 . . . . . . 7  |-  ( A  e.  V  ->  (
( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B
)  <->  ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) ) )
73, 6bitrd 187 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B
)  <->  ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) ) )
87exbidv 1798 . . . . 5  |-  ( A  e.  V  ->  ( E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) ) )
92, 8bitrd 187 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) ) )
109abbidv 2258 . . 3  |-  ( A  e.  V  ->  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) } )
111, 10eqtrd 2173 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) } )
12 df-uni 3745 . . 3  |-  U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  B ) }
1312csbeq2i 3034 . 2  |-  [_ A  /  x ]_ U. B  =  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }
14 df-uni 3745 . 2  |-  U. [_ A  /  x ]_ B  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) }
1511, 13, 143eqtr4g 2198 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332   E.wex 1469    e. wcel 1481   {cab 2126   [.wsbc 2913   [_csb 3007   U.cuni 3744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-sbc 2914  df-csb 3008  df-uni 3745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator