ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcg GIF version

Theorem sbcg 3069
Description: Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3067. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
sbcg (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem sbcg
StepHypRef Expression
1 nfv 1552 . 2 𝑥𝜑
21sbcgf 3067 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2177  [wsbc 2999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-sbc 3000
This theorem is referenced by:  sbcabel  3081  csbunig  3860  csbxpg  4760  sbcfung  5300  f1od2  6328
  Copyright terms: Public domain W3C validator