ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcg GIF version

Theorem sbcg 3078
Description: Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3076. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
sbcg (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem sbcg
StepHypRef Expression
1 nfv 1554 . 2 𝑥𝜑
21sbcgf 3076 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2180  [wsbc 3008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-sbc 3009
This theorem is referenced by:  sbcabel  3091  csbunig  3875  csbxpg  4777  sbcfung  5318  f1od2  6351
  Copyright terms: Public domain W3C validator