Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbxpg | Unicode version |
Description: Distribute proper substitution through the cross product of two classes. (Contributed by Alan Sare, 10-Nov-2012.) |
Ref | Expression |
---|---|
csbxpg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbabg 3088 | . . 3 | |
2 | sbcexg 2987 | . . . . 5 | |
3 | sbcexg 2987 | . . . . . . 7 | |
4 | sbcang 2976 | . . . . . . . . 9 | |
5 | sbcg 3002 | . . . . . . . . . 10 | |
6 | sbcang 2976 | . . . . . . . . . . 11 | |
7 | sbcel2g 3048 | . . . . . . . . . . . 12 | |
8 | sbcel2g 3048 | . . . . . . . . . . . 12 | |
9 | 7, 8 | anbi12d 465 | . . . . . . . . . . 11 |
10 | 6, 9 | bitrd 187 | . . . . . . . . . 10 |
11 | 5, 10 | anbi12d 465 | . . . . . . . . 9 |
12 | 4, 11 | bitrd 187 | . . . . . . . 8 |
13 | 12 | exbidv 1802 | . . . . . . 7 |
14 | 3, 13 | bitrd 187 | . . . . . 6 |
15 | 14 | exbidv 1802 | . . . . 5 |
16 | 2, 15 | bitrd 187 | . . . 4 |
17 | 16 | abbidv 2272 | . . 3 |
18 | 1, 17 | eqtrd 2187 | . 2 |
19 | df-xp 4585 | . . . 4 | |
20 | df-opab 4022 | . . . 4 | |
21 | 19, 20 | eqtri 2175 | . . 3 |
22 | 21 | csbeq2i 3054 | . 2 |
23 | df-xp 4585 | . . 3 | |
24 | df-opab 4022 | . . 3 | |
25 | 23, 24 | eqtri 2175 | . 2 |
26 | 18, 22, 25 | 3eqtr4g 2212 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1332 wex 1469 wcel 2125 cab 2140 wsbc 2933 csb 3027 cop 3559 copab 4020 cxp 4577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-sbc 2934 df-csb 3028 df-opab 4022 df-xp 4585 |
This theorem is referenced by: csbresg 4862 |
Copyright terms: Public domain | W3C validator |