| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbxpg | Unicode version | ||
| Description: Distribute proper substitution through the cross product of two classes. (Contributed by Alan Sare, 10-Nov-2012.) |
| Ref | Expression |
|---|---|
| csbxpg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbabg 3186 |
. . 3
| |
| 2 | sbcexg 3083 |
. . . . 5
| |
| 3 | sbcexg 3083 |
. . . . . . 7
| |
| 4 | sbcang 3072 |
. . . . . . . . 9
| |
| 5 | sbcg 3098 |
. . . . . . . . . 10
| |
| 6 | sbcang 3072 |
. . . . . . . . . . 11
| |
| 7 | sbcel2g 3145 |
. . . . . . . . . . . 12
| |
| 8 | sbcel2g 3145 |
. . . . . . . . . . . 12
| |
| 9 | 7, 8 | anbi12d 473 |
. . . . . . . . . . 11
|
| 10 | 6, 9 | bitrd 188 |
. . . . . . . . . 10
|
| 11 | 5, 10 | anbi12d 473 |
. . . . . . . . 9
|
| 12 | 4, 11 | bitrd 188 |
. . . . . . . 8
|
| 13 | 12 | exbidv 1871 |
. . . . . . 7
|
| 14 | 3, 13 | bitrd 188 |
. . . . . 6
|
| 15 | 14 | exbidv 1871 |
. . . . 5
|
| 16 | 2, 15 | bitrd 188 |
. . . 4
|
| 17 | 16 | abbidv 2347 |
. . 3
|
| 18 | 1, 17 | eqtrd 2262 |
. 2
|
| 19 | df-xp 4724 |
. . . 4
| |
| 20 | df-opab 4145 |
. . . 4
| |
| 21 | 19, 20 | eqtri 2250 |
. . 3
|
| 22 | 21 | csbeq2i 3151 |
. 2
|
| 23 | df-xp 4724 |
. . 3
| |
| 24 | df-opab 4145 |
. . 3
| |
| 25 | 23, 24 | eqtri 2250 |
. 2
|
| 26 | 18, 22, 25 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sbc 3029 df-csb 3125 df-opab 4145 df-xp 4724 |
| This theorem is referenced by: csbresg 5007 |
| Copyright terms: Public domain | W3C validator |