Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbciedf | Unicode version |
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.) |
Ref | Expression |
---|---|
sbcied.1 | |
sbcied.2 | |
sbciedf.3 | |
sbciedf.4 |
Ref | Expression |
---|---|
sbciedf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcied.1 | . 2 | |
2 | sbciedf.4 | . 2 | |
3 | sbciedf.3 | . . 3 | |
4 | sbcied.2 | . . . 4 | |
5 | 4 | ex 114 | . . 3 |
6 | 3, 5 | alrimi 1510 | . 2 |
7 | sbciegft 2981 | . 2 | |
8 | 1, 2, 6, 7 | syl3anc 1228 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wnf 1448 wcel 2136 wsbc 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sbc 2952 |
This theorem is referenced by: sbcied 2987 sbc2iegf 3021 csbiebt 3084 sbcnestgf 3096 ovmpodxf 5967 |
Copyright terms: Public domain | W3C validator |