Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbciedf Unicode version

Theorem sbciedf 2939
 Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.)
Hypotheses
Ref Expression
sbcied.1
sbcied.2
sbciedf.3
sbciedf.4
Assertion
Ref Expression
sbciedf
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()   ()

Proof of Theorem sbciedf
StepHypRef Expression
1 sbcied.1 . 2
2 sbciedf.4 . 2
3 sbciedf.3 . . 3
4 sbcied.2 . . . 4
54ex 114 . . 3
63, 5alrimi 1502 . 2
7 sbciegft 2934 . 2
81, 2, 6, 7syl3anc 1216 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wb 104  wal 1329   wceq 1331  wnf 1436   wcel 1480  wsbc 2904 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-sbc 2905 This theorem is referenced by:  sbcied  2940  sbc2iegf  2974  csbiebt  3034  sbcnestgf  3046  ovmpodxf  5889
 Copyright terms: Public domain W3C validator