Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbciedf | Unicode version |
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.) |
Ref | Expression |
---|---|
sbcied.1 | |
sbcied.2 | |
sbciedf.3 | |
sbciedf.4 |
Ref | Expression |
---|---|
sbciedf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcied.1 | . 2 | |
2 | sbciedf.4 | . 2 | |
3 | sbciedf.3 | . . 3 | |
4 | sbcied.2 | . . . 4 | |
5 | 4 | ex 115 | . . 3 |
6 | 3, 5 | alrimi 1520 | . 2 |
7 | sbciegft 2991 | . 2 | |
8 | 1, 2, 6, 7 | syl3anc 1238 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wal 1351 wceq 1353 wnf 1458 wcel 2146 wsbc 2960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-sbc 2961 |
This theorem is referenced by: sbcied 2997 sbc2iegf 3031 csbiebt 3094 sbcnestgf 3106 ovmpodxf 5990 |
Copyright terms: Public domain | W3C validator |