Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbciedf | Unicode version |
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.) |
Ref | Expression |
---|---|
sbcied.1 | |
sbcied.2 | |
sbciedf.3 | |
sbciedf.4 |
Ref | Expression |
---|---|
sbciedf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcied.1 | . 2 | |
2 | sbciedf.4 | . 2 | |
3 | sbciedf.3 | . . 3 | |
4 | sbcied.2 | . . . 4 | |
5 | 4 | ex 114 | . . 3 |
6 | 3, 5 | alrimi 1515 | . 2 |
7 | sbciegft 2985 | . 2 | |
8 | 1, 2, 6, 7 | syl3anc 1233 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wceq 1348 wnf 1453 wcel 2141 wsbc 2955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-sbc 2956 |
This theorem is referenced by: sbcied 2991 sbc2iegf 3025 csbiebt 3088 sbcnestgf 3100 ovmpodxf 5978 |
Copyright terms: Public domain | W3C validator |