| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbciedf | GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| sbcied.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sbcied.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| sbciedf.3 | ⊢ Ⅎ𝑥𝜑 |
| sbciedf.4 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| Ref | Expression |
|---|---|
| sbciedf | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcied.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | sbciedf.4 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 3 | sbciedf.3 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 4 | sbcied.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | ex 115 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) |
| 6 | 3, 5 | alrimi 1546 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) |
| 7 | sbciegft 3033 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜒 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | |
| 8 | 1, 2, 6, 7 | syl3anc 1250 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 = wceq 1373 Ⅎwnf 1484 ∈ wcel 2177 [wsbc 3002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-sbc 3003 |
| This theorem is referenced by: sbcied 3039 sbc2iegf 3073 csbiebt 3137 sbcnestgf 3149 ovmpodxf 6083 |
| Copyright terms: Public domain | W3C validator |