ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbciedf GIF version

Theorem sbciedf 2874
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.)
Hypotheses
Ref Expression
sbcied.1 (𝜑𝐴𝑉)
sbcied.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
sbciedf.3 𝑥𝜑
sbciedf.4 (𝜑 → Ⅎ𝑥𝜒)
Assertion
Ref Expression
sbciedf (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑥)   𝑉(𝑥)

Proof of Theorem sbciedf
StepHypRef Expression
1 sbcied.1 . 2 (𝜑𝐴𝑉)
2 sbciedf.4 . 2 (𝜑 → Ⅎ𝑥𝜒)
3 sbciedf.3 . . 3 𝑥𝜑
4 sbcied.2 . . . 4 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
54ex 113 . . 3 (𝜑 → (𝑥 = 𝐴 → (𝜓𝜒)))
63, 5alrimi 1460 . 2 (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)))
7 sbciegft 2869 . 2 ((𝐴𝑉 ∧ Ⅎ𝑥𝜒 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜓𝜒))) → ([𝐴 / 𝑥]𝜓𝜒))
81, 2, 6, 7syl3anc 1174 1 (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1287   = wceq 1289  wnf 1394  wcel 1438  [wsbc 2840
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-sbc 2841
This theorem is referenced by:  sbcied  2875  sbc2iegf  2909  csbiebt  2967  sbcnestgf  2979  ovmpt2dxf  5762
  Copyright terms: Public domain W3C validator