ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcie Unicode version

Theorem sbcie 3033
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.)
Hypotheses
Ref Expression
sbcie.1  |-  A  e. 
_V
sbcie.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
sbcie  |-  ( [. A  /  x ]. ph  <->  ps )
Distinct variable groups:    x, A    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem sbcie
StepHypRef Expression
1 sbcie.1 . 2  |-  A  e. 
_V
2 sbcie.2 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
32sbcieg 3031 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ph  <->  ps ) )
41, 3ax-mp 5 1  |-  ( [. A  /  x ]. ph  <->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176   _Vcvv 2772   [.wsbc 2998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-sbc 2999
This theorem is referenced by:  findcard2  6986  findcard2s  6987  ac6sfi  6995  nn1suc  9055  indstr  9714  bezoutlemmain  12319  prmind2  12442  isghm  13579
  Copyright terms: Public domain W3C validator