ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco3v GIF version

Theorem sbco3v 1891
Description: Version of sbco3 1896 with a distinct variable constraint between 𝑥 and 𝑦. (Contributed by Jim Kingdon, 19-Feb-2018.)
Assertion
Ref Expression
sbco3v ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbco3v
StepHypRef Expression
1 nfs1v 1863 . . . 4 𝑥[𝑦 / 𝑥]𝜑
21nfri 1457 . . 3 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
32sbco2v 1869 . 2 ([𝑧 / 𝑥][𝑥 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑)
4 sbco 1890 . . 3 ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑥 / 𝑦]𝜑)
54sbbii 1695 . 2 ([𝑧 / 𝑥][𝑥 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
63, 5bitr3i 184 1 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 103  [wsb 1692
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-sb 1693
This theorem is referenced by:  sbcomv  1893
  Copyright terms: Public domain W3C validator