![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbco3v | GIF version |
Description: Version of sbco3 1974 with a distinct variable constraint between 𝑥 and 𝑦. (Contributed by Jim Kingdon, 19-Feb-2018.) |
Ref | Expression |
---|---|
sbco3v | ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfs1v 1939 | . . . 4 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
2 | 1 | nfri 1519 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) |
3 | 2 | sbco2vh 1945 | . 2 ⊢ ([𝑧 / 𝑥][𝑥 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑) |
4 | sbco 1968 | . . 3 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑥 / 𝑦]𝜑) | |
5 | 4 | sbbii 1765 | . 2 ⊢ ([𝑧 / 𝑥][𝑥 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑) |
6 | 3, 5 | bitr3i 186 | 1 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 [wsb 1762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 |
This theorem is referenced by: sbcomv 1971 |
Copyright terms: Public domain | W3C validator |