ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcrex Unicode version

Theorem sbcrex 3030
Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcrex  |-  ( [. A  /  x ]. E. y  e.  B  ph  <->  E. y  e.  B  [. A  /  x ]. ph )
Distinct variable groups:    y, A    x, B    x, y
Allowed substitution hints:    ph( x, y)    A( x)    B( y)

Proof of Theorem sbcrex
StepHypRef Expression
1 nfcv 2308 . 2  |-  F/_ y A
2 sbcrext 3028 . 2  |-  ( F/_ y A  ->  ( [. A  /  x ]. E. y  e.  B  ph  <->  E. y  e.  B  [. A  /  x ]. ph ) )
31, 2ax-mp 5 1  |-  ( [. A  /  x ]. E. y  e.  B  ph  <->  E. y  e.  B  [. A  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   F/_wnfc 2295   E.wrex 2445   [.wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952
This theorem is referenced by:  ac6sfi  6864  rexfiuz  10931
  Copyright terms: Public domain W3C validator