ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcrex Unicode version

Theorem sbcrex 3085
Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcrex  |-  ( [. A  /  x ]. E. y  e.  B  ph  <->  E. y  e.  B  [. A  /  x ]. ph )
Distinct variable groups:    y, A    x, B    x, y
Allowed substitution hints:    ph( x, y)    A( x)    B( y)

Proof of Theorem sbcrex
StepHypRef Expression
1 nfcv 2350 . 2  |-  F/_ y A
2 sbcrext 3083 . 2  |-  ( F/_ y A  ->  ( [. A  /  x ]. E. y  e.  B  ph  <->  E. y  e.  B  [. A  /  x ]. ph ) )
31, 2ax-mp 5 1  |-  ( [. A  /  x ]. E. y  e.  B  ph  <->  E. y  e.  B  [. A  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   F/_wnfc 2337   E.wrex 2487   [.wsbc 3005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006
This theorem is referenced by:  ac6sfi  7021  csbwrdg  11060  rexfiuz  11415
  Copyright terms: Public domain W3C validator