ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcralg Unicode version

Theorem sbcralg 3084
Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
sbcralg  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. y  e.  B  ph  <->  A. y  e.  B  [. A  /  x ]. ph )
)
Distinct variable groups:    y, A    x, B    x, y
Allowed substitution hints:    ph( x, y)    A( x)    B( y)    V( x, y)

Proof of Theorem sbcralg
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3008 . 2  |-  ( z  =  A  ->  ( [ z  /  x ] A. y  e.  B  ph  <->  [. A  /  x ]. A. y  e.  B  ph ) )
2 dfsbcq2 3008 . . 3  |-  ( z  =  A  ->  ( [ z  /  x ] ph  <->  [. A  /  x ]. ph ) )
32ralbidv 2508 . 2  |-  ( z  =  A  ->  ( A. y  e.  B  [ z  /  x ] ph  <->  A. y  e.  B  [. A  /  x ]. ph ) )
4 nfcv 2350 . . . 4  |-  F/_ x B
5 nfs1v 1968 . . . 4  |-  F/ x [ z  /  x ] ph
64, 5nfralxy 2546 . . 3  |-  F/ x A. y  e.  B  [ z  /  x ] ph
7 sbequ12 1795 . . . 4  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
87ralbidv 2508 . . 3  |-  ( x  =  z  ->  ( A. y  e.  B  ph  <->  A. y  e.  B  [
z  /  x ] ph ) )
96, 8sbie 1815 . 2  |-  ( [ z  /  x ] A. y  e.  B  ph  <->  A. y  e.  B  [
z  /  x ] ph )
101, 3, 9vtoclbg 2839 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. y  e.  B  ph  <->  A. y  e.  B  [. A  /  x ]. ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   [wsb 1786    e. wcel 2178   A.wral 2486   [.wsbc 3005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-sbc 3006
This theorem is referenced by:  r19.12sn  3709
  Copyright terms: Public domain W3C validator