ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcralg Unicode version

Theorem sbcralg 3029
Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
sbcralg  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. y  e.  B  ph  <->  A. y  e.  B  [. A  /  x ]. ph )
)
Distinct variable groups:    y, A    x, B    x, y
Allowed substitution hints:    ph( x, y)    A( x)    B( y)    V( x, y)

Proof of Theorem sbcralg
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2954 . 2  |-  ( z  =  A  ->  ( [ z  /  x ] A. y  e.  B  ph  <->  [. A  /  x ]. A. y  e.  B  ph ) )
2 dfsbcq2 2954 . . 3  |-  ( z  =  A  ->  ( [ z  /  x ] ph  <->  [. A  /  x ]. ph ) )
32ralbidv 2466 . 2  |-  ( z  =  A  ->  ( A. y  e.  B  [ z  /  x ] ph  <->  A. y  e.  B  [. A  /  x ]. ph ) )
4 nfcv 2308 . . . 4  |-  F/_ x B
5 nfs1v 1927 . . . 4  |-  F/ x [ z  /  x ] ph
64, 5nfralxy 2504 . . 3  |-  F/ x A. y  e.  B  [ z  /  x ] ph
7 sbequ12 1759 . . . 4  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
87ralbidv 2466 . . 3  |-  ( x  =  z  ->  ( A. y  e.  B  ph  <->  A. y  e.  B  [
z  /  x ] ph ) )
96, 8sbie 1779 . 2  |-  ( [ z  /  x ] A. y  e.  B  ph  <->  A. y  e.  B  [
z  /  x ] ph )
101, 3, 9vtoclbg 2787 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. y  e.  B  ph  <->  A. y  e.  B  [. A  /  x ]. ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343   [wsb 1750    e. wcel 2136   A.wral 2444   [.wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-sbc 2952
This theorem is referenced by:  r19.12sn  3642
  Copyright terms: Public domain W3C validator