ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seeq2 Unicode version

Theorem seeq2 4375
Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
seeq2  |-  ( A  =  B  ->  ( R Se  A  <->  R Se  B )
)

Proof of Theorem seeq2
StepHypRef Expression
1 eqimss2 3238 . . 3  |-  ( A  =  B  ->  B  C_  A )
2 sess2 4373 . . 3  |-  ( B 
C_  A  ->  ( R Se  A  ->  R Se  B
) )
31, 2syl 14 . 2  |-  ( A  =  B  ->  ( R Se  A  ->  R Se  B
) )
4 eqimss 3237 . . 3  |-  ( A  =  B  ->  A  C_  B )
5 sess2 4373 . . 3  |-  ( A 
C_  B  ->  ( R Se  B  ->  R Se  A
) )
64, 5syl 14 . 2  |-  ( A  =  B  ->  ( R Se  B  ->  R Se  A
) )
73, 6impbid 129 1  |-  ( A  =  B  ->  ( R Se  A  <->  R Se  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    C_ wss 3157   Se wse 4364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4151
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rab 2484  df-v 2765  df-in 3163  df-ss 3170  df-se 4368
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator