ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seeq1 Unicode version

Theorem seeq1 4370
Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
seeq1  |-  ( R  =  S  ->  ( R Se  A  <->  S Se  A )
)

Proof of Theorem seeq1
StepHypRef Expression
1 eqimss2 3234 . . 3  |-  ( R  =  S  ->  S  C_  R )
2 sess1 4368 . . 3  |-  ( S 
C_  R  ->  ( R Se  A  ->  S Se  A
) )
31, 2syl 14 . 2  |-  ( R  =  S  ->  ( R Se  A  ->  S Se  A
) )
4 eqimss 3233 . . 3  |-  ( R  =  S  ->  R  C_  S )
5 sess1 4368 . . 3  |-  ( R 
C_  S  ->  ( S Se  A  ->  R Se  A
) )
64, 5syl 14 . 2  |-  ( R  =  S  ->  ( S Se  A  ->  R Se  A
) )
73, 6impbid 129 1  |-  ( R  =  S  ->  ( R Se  A  <->  S Se  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    C_ wss 3153   Se wse 4360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4147
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rab 2481  df-v 2762  df-in 3159  df-ss 3166  df-br 4030  df-se 4364
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator