ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seeq2 GIF version

Theorem seeq2 4387
Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
seeq2 (𝐴 = 𝐵 → (𝑅 Se 𝐴𝑅 Se 𝐵))

Proof of Theorem seeq2
StepHypRef Expression
1 eqimss2 3248 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 sess2 4385 . . 3 (𝐵𝐴 → (𝑅 Se 𝐴𝑅 Se 𝐵))
31, 2syl 14 . 2 (𝐴 = 𝐵 → (𝑅 Se 𝐴𝑅 Se 𝐵))
4 eqimss 3247 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 sess2 4385 . . 3 (𝐴𝐵 → (𝑅 Se 𝐵𝑅 Se 𝐴))
64, 5syl 14 . 2 (𝐴 = 𝐵 → (𝑅 Se 𝐵𝑅 Se 𝐴))
73, 6impbid 129 1 (𝐴 = 𝐵 → (𝑅 Se 𝐴𝑅 Se 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wss 3166   Se wse 4376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4162
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rab 2493  df-v 2774  df-in 3172  df-ss 3179  df-se 4380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator