ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seeq2 GIF version

Theorem seeq2 4386
Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
seeq2 (𝐴 = 𝐵 → (𝑅 Se 𝐴𝑅 Se 𝐵))

Proof of Theorem seeq2
StepHypRef Expression
1 eqimss2 3247 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 sess2 4384 . . 3 (𝐵𝐴 → (𝑅 Se 𝐴𝑅 Se 𝐵))
31, 2syl 14 . 2 (𝐴 = 𝐵 → (𝑅 Se 𝐴𝑅 Se 𝐵))
4 eqimss 3246 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 sess2 4384 . . 3 (𝐴𝐵 → (𝑅 Se 𝐵𝑅 Se 𝐴))
64, 5syl 14 . 2 (𝐴 = 𝐵 → (𝑅 Se 𝐵𝑅 Se 𝐴))
73, 6impbid 129 1 (𝐴 = 𝐵 → (𝑅 Se 𝐴𝑅 Se 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1372  wss 3165   Se wse 4375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-sep 4161
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rab 2492  df-v 2773  df-in 3171  df-ss 3178  df-se 4379
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator