ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfse Unicode version

Theorem nfse 4372
Description: Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfse.r  |-  F/_ x R
nfse.a  |-  F/_ x A
Assertion
Ref Expression
nfse  |-  F/ x  R Se  A

Proof of Theorem nfse
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-se 4364 . 2  |-  ( R Se  A  <->  A. b  e.  A  { a  e.  A  |  a R b }  e.  _V )
2 nfse.a . . 3  |-  F/_ x A
3 nfcv 2336 . . . . . 6  |-  F/_ x
a
4 nfse.r . . . . . 6  |-  F/_ x R
5 nfcv 2336 . . . . . 6  |-  F/_ x
b
63, 4, 5nfbr 4075 . . . . 5  |-  F/ x  a R b
76, 2nfrabw 2675 . . . 4  |-  F/_ x { a  e.  A  |  a R b }
87nfel1 2347 . . 3  |-  F/ x { a  e.  A  |  a R b }  e.  _V
92, 8nfralxy 2532 . 2  |-  F/ x A. b  e.  A  { a  e.  A  |  a R b }  e.  _V
101, 9nfxfr 1485 1  |-  F/ x  R Se  A
Colors of variables: wff set class
Syntax hints:   F/wnf 1471    e. wcel 2164   F/_wnfc 2323   A.wral 2472   {crab 2476   _Vcvv 2760   class class class wbr 4029   Se wse 4360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rab 2481  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-se 4364
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator