ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfse Unicode version

Theorem nfse 4388
Description: Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfse.r  |-  F/_ x R
nfse.a  |-  F/_ x A
Assertion
Ref Expression
nfse  |-  F/ x  R Se  A

Proof of Theorem nfse
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-se 4380 . 2  |-  ( R Se  A  <->  A. b  e.  A  { a  e.  A  |  a R b }  e.  _V )
2 nfse.a . . 3  |-  F/_ x A
3 nfcv 2348 . . . . . 6  |-  F/_ x
a
4 nfse.r . . . . . 6  |-  F/_ x R
5 nfcv 2348 . . . . . 6  |-  F/_ x
b
63, 4, 5nfbr 4090 . . . . 5  |-  F/ x  a R b
76, 2nfrabw 2687 . . . 4  |-  F/_ x { a  e.  A  |  a R b }
87nfel1 2359 . . 3  |-  F/ x { a  e.  A  |  a R b }  e.  _V
92, 8nfralxy 2544 . 2  |-  F/ x A. b  e.  A  { a  e.  A  |  a R b }  e.  _V
101, 9nfxfr 1497 1  |-  F/ x  R Se  A
Colors of variables: wff set class
Syntax hints:   F/wnf 1483    e. wcel 2176   F/_wnfc 2335   A.wral 2484   {crab 2488   _Vcvv 2772   class class class wbr 4044   Se wse 4376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rab 2493  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-se 4380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator