ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfse Unicode version

Theorem nfse 4326
Description: Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfse.r  |-  F/_ x R
nfse.a  |-  F/_ x A
Assertion
Ref Expression
nfse  |-  F/ x  R Se  A

Proof of Theorem nfse
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-se 4318 . 2  |-  ( R Se  A  <->  A. b  e.  A  { a  e.  A  |  a R b }  e.  _V )
2 nfse.a . . 3  |-  F/_ x A
3 nfcv 2312 . . . . . 6  |-  F/_ x
a
4 nfse.r . . . . . 6  |-  F/_ x R
5 nfcv 2312 . . . . . 6  |-  F/_ x
b
63, 4, 5nfbr 4035 . . . . 5  |-  F/ x  a R b
76, 2nfrabxy 2650 . . . 4  |-  F/_ x { a  e.  A  |  a R b }
87nfel1 2323 . . 3  |-  F/ x { a  e.  A  |  a R b }  e.  _V
92, 8nfralxy 2508 . 2  |-  F/ x A. b  e.  A  { a  e.  A  |  a R b }  e.  _V
101, 9nfxfr 1467 1  |-  F/ x  R Se  A
Colors of variables: wff set class
Syntax hints:   F/wnf 1453    e. wcel 2141   F/_wnfc 2299   A.wral 2448   {crab 2452   _Vcvv 2730   class class class wbr 3989   Se wse 4314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rab 2457  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-se 4318
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator