ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfse Unicode version

Theorem nfse 4192
Description: Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfse.r  |-  F/_ x R
nfse.a  |-  F/_ x A
Assertion
Ref Expression
nfse  |-  F/ x  R Se  A

Proof of Theorem nfse
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-se 4184 . 2  |-  ( R Se  A  <->  A. b  e.  A  { a  e.  A  |  a R b }  e.  _V )
2 nfse.a . . 3  |-  F/_ x A
3 nfcv 2235 . . . . . 6  |-  F/_ x
a
4 nfse.r . . . . . 6  |-  F/_ x R
5 nfcv 2235 . . . . . 6  |-  F/_ x
b
63, 4, 5nfbr 3911 . . . . 5  |-  F/ x  a R b
76, 2nfrabxy 2561 . . . 4  |-  F/_ x { a  e.  A  |  a R b }
87nfel1 2246 . . 3  |-  F/ x { a  e.  A  |  a R b }  e.  _V
92, 8nfralxy 2425 . 2  |-  F/ x A. b  e.  A  { a  e.  A  |  a R b }  e.  _V
101, 9nfxfr 1415 1  |-  F/ x  R Se  A
Colors of variables: wff set class
Syntax hints:   F/wnf 1401    e. wcel 1445   F/_wnfc 2222   A.wral 2370   {crab 2374   _Vcvv 2633   class class class wbr 3867   Se wse 4180
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rab 2379  df-v 2635  df-un 3017  df-sn 3472  df-pr 3473  df-op 3475  df-br 3868  df-se 4184
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator