Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sess2 | Unicode version |
Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
sess2 | Se Se |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssralv 3206 | . . 3 | |
2 | rabss2 3225 | . . . . 5 | |
3 | ssexg 4121 | . . . . . 6 | |
4 | 3 | ex 114 | . . . . 5 |
5 | 2, 4 | syl 14 | . . . 4 |
6 | 5 | ralimdv 2534 | . . 3 |
7 | 1, 6 | syld 45 | . 2 |
8 | df-se 4311 | . 2 Se | |
9 | df-se 4311 | . 2 Se | |
10 | 7, 8, 9 | 3imtr4g 204 | 1 Se Se |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 wral 2444 crab 2448 cvv 2726 wss 3116 class class class wbr 3982 Se wse 4307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rab 2453 df-v 2728 df-in 3122 df-ss 3129 df-se 4311 |
This theorem is referenced by: seeq2 4318 |
Copyright terms: Public domain | W3C validator |