ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sess2 Unicode version

Theorem sess2 4385
Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
sess2  |-  ( A 
C_  B  ->  ( R Se  B  ->  R Se  A
) )

Proof of Theorem sess2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 3257 . . 3  |-  ( A 
C_  B  ->  ( A. x  e.  B  { y  e.  B  |  y R x }  e.  _V  ->  A. x  e.  A  {
y  e.  B  | 
y R x }  e.  _V ) )
2 rabss2 3276 . . . . 5  |-  ( A 
C_  B  ->  { y  e.  A  |  y R x }  C_  { y  e.  B  | 
y R x }
)
3 ssexg 4183 . . . . . 6  |-  ( ( { y  e.  A  |  y R x }  C_  { y  e.  B  |  y R x }  /\  { y  e.  B  | 
y R x }  e.  _V )  ->  { y  e.  A  |  y R x }  e.  _V )
43ex 115 . . . . 5  |-  ( { y  e.  A  | 
y R x }  C_ 
{ y  e.  B  |  y R x }  ->  ( {
y  e.  B  | 
y R x }  e.  _V  ->  { y  e.  A  |  y R x }  e.  _V ) )
52, 4syl 14 . . . 4  |-  ( A 
C_  B  ->  ( { y  e.  B  |  y R x }  e.  _V  ->  { y  e.  A  | 
y R x }  e.  _V ) )
65ralimdv 2574 . . 3  |-  ( A 
C_  B  ->  ( A. x  e.  A  { y  e.  B  |  y R x }  e.  _V  ->  A. x  e.  A  {
y  e.  A  | 
y R x }  e.  _V ) )
71, 6syld 45 . 2  |-  ( A 
C_  B  ->  ( A. x  e.  B  { y  e.  B  |  y R x }  e.  _V  ->  A. x  e.  A  {
y  e.  A  | 
y R x }  e.  _V ) )
8 df-se 4380 . 2  |-  ( R Se  B  <->  A. x  e.  B  { y  e.  B  |  y R x }  e.  _V )
9 df-se 4380 . 2  |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
107, 8, 93imtr4g 205 1  |-  ( A 
C_  B  ->  ( R Se  B  ->  R Se  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   A.wral 2484   {crab 2488   _Vcvv 2772    C_ wss 3166   class class class wbr 4044   Se wse 4376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4162
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rab 2493  df-v 2774  df-in 3172  df-ss 3179  df-se 4380
This theorem is referenced by:  seeq2  4387
  Copyright terms: Public domain W3C validator