ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sess2 Unicode version

Theorem sess2 4316
Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
sess2  |-  ( A 
C_  B  ->  ( R Se  B  ->  R Se  A
) )

Proof of Theorem sess2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 3206 . . 3  |-  ( A 
C_  B  ->  ( A. x  e.  B  { y  e.  B  |  y R x }  e.  _V  ->  A. x  e.  A  {
y  e.  B  | 
y R x }  e.  _V ) )
2 rabss2 3225 . . . . 5  |-  ( A 
C_  B  ->  { y  e.  A  |  y R x }  C_  { y  e.  B  | 
y R x }
)
3 ssexg 4121 . . . . . 6  |-  ( ( { y  e.  A  |  y R x }  C_  { y  e.  B  |  y R x }  /\  { y  e.  B  | 
y R x }  e.  _V )  ->  { y  e.  A  |  y R x }  e.  _V )
43ex 114 . . . . 5  |-  ( { y  e.  A  | 
y R x }  C_ 
{ y  e.  B  |  y R x }  ->  ( {
y  e.  B  | 
y R x }  e.  _V  ->  { y  e.  A  |  y R x }  e.  _V ) )
52, 4syl 14 . . . 4  |-  ( A 
C_  B  ->  ( { y  e.  B  |  y R x }  e.  _V  ->  { y  e.  A  | 
y R x }  e.  _V ) )
65ralimdv 2534 . . 3  |-  ( A 
C_  B  ->  ( A. x  e.  A  { y  e.  B  |  y R x }  e.  _V  ->  A. x  e.  A  {
y  e.  A  | 
y R x }  e.  _V ) )
71, 6syld 45 . 2  |-  ( A 
C_  B  ->  ( A. x  e.  B  { y  e.  B  |  y R x }  e.  _V  ->  A. x  e.  A  {
y  e.  A  | 
y R x }  e.  _V ) )
8 df-se 4311 . 2  |-  ( R Se  B  <->  A. x  e.  B  { y  e.  B  |  y R x }  e.  _V )
9 df-se 4311 . 2  |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
107, 8, 93imtr4g 204 1  |-  ( A 
C_  B  ->  ( R Se  B  ->  R Se  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   A.wral 2444   {crab 2448   _Vcvv 2726    C_ wss 3116   class class class wbr 3982   Se wse 4307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rab 2453  df-v 2728  df-in 3122  df-ss 3129  df-se 4311
This theorem is referenced by:  seeq2  4318
  Copyright terms: Public domain W3C validator