| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setind | GIF version | ||
| Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| setind | ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3172 | . . . 4 ⊢ (𝑥 ⊆ 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) | |
| 2 | 1 | imbi1i 238 | . . 3 ⊢ ((𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ↔ (∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
| 3 | 2 | albii 1484 | . 2 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ↔ ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
| 4 | setindel 4574 | . 2 ⊢ (∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) → 𝐴 = V) | |
| 5 | 3, 4 | sylbi 121 | 1 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 |
| This theorem is referenced by: setind2 4576 |
| Copyright terms: Public domain | W3C validator |