Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setind | GIF version |
Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
setind | ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3136 | . . . 4 ⊢ (𝑥 ⊆ 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) | |
2 | 1 | imbi1i 237 | . . 3 ⊢ ((𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ↔ (∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
3 | 2 | albii 1463 | . 2 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ↔ ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
4 | setindel 4522 | . 2 ⊢ (∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) → 𝐴 = V) | |
5 | 3, 4 | sylbi 120 | 1 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-ral 2453 df-v 2732 df-in 3127 df-ss 3134 |
This theorem is referenced by: setind2 4524 |
Copyright terms: Public domain | W3C validator |