![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > setind | GIF version |
Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
setind | ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3168 | . . . 4 ⊢ (𝑥 ⊆ 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) | |
2 | 1 | imbi1i 238 | . . 3 ⊢ ((𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ↔ (∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
3 | 2 | albii 1481 | . 2 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ↔ ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
4 | setindel 4570 | . 2 ⊢ (∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) → 𝐴 = V) | |
5 | 3, 4 | sylbi 121 | 1 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-ral 2477 df-v 2762 df-in 3159 df-ss 3166 |
This theorem is referenced by: setind2 4572 |
Copyright terms: Public domain | W3C validator |