ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setind GIF version

Theorem setind 4631
Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
setind (∀𝑥(𝑥𝐴𝑥𝐴) → 𝐴 = V)
Distinct variable group:   𝑥,𝐴

Proof of Theorem setind
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssalel 3212 . . . 4 (𝑥𝐴 ↔ ∀𝑦(𝑦𝑥𝑦𝐴))
21imbi1i 238 . . 3 ((𝑥𝐴𝑥𝐴) ↔ (∀𝑦(𝑦𝑥𝑦𝐴) → 𝑥𝐴))
32albii 1516 . 2 (∀𝑥(𝑥𝐴𝑥𝐴) ↔ ∀𝑥(∀𝑦(𝑦𝑥𝑦𝐴) → 𝑥𝐴))
4 setindel 4630 . 2 (∀𝑥(∀𝑦(𝑦𝑥𝑦𝐴) → 𝑥𝐴) → 𝐴 = V)
53, 4sylbi 121 1 (∀𝑥(𝑥𝐴𝑥𝐴) → 𝐴 = V)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393   = wceq 1395  wcel 2200  Vcvv 2799  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210
This theorem is referenced by:  setind2  4632
  Copyright terms: Public domain W3C validator