Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setind | GIF version |
Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
setind | ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3131 | . . . 4 ⊢ (𝑥 ⊆ 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) | |
2 | 1 | imbi1i 237 | . . 3 ⊢ ((𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ↔ (∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
3 | 2 | albii 1458 | . 2 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ↔ ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
4 | setindel 4515 | . 2 ⊢ (∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) → 𝐴 = V) | |
5 | 3, 4 | sylbi 120 | 1 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-ral 2449 df-v 2728 df-in 3122 df-ss 3129 |
This theorem is referenced by: setind2 4517 |
Copyright terms: Public domain | W3C validator |