ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setind GIF version

Theorem setind 4575
Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
setind (∀𝑥(𝑥𝐴𝑥𝐴) → 𝐴 = V)
Distinct variable group:   𝑥,𝐴

Proof of Theorem setind
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfss2 3172 . . . 4 (𝑥𝐴 ↔ ∀𝑦(𝑦𝑥𝑦𝐴))
21imbi1i 238 . . 3 ((𝑥𝐴𝑥𝐴) ↔ (∀𝑦(𝑦𝑥𝑦𝐴) → 𝑥𝐴))
32albii 1484 . 2 (∀𝑥(𝑥𝐴𝑥𝐴) ↔ ∀𝑥(∀𝑦(𝑦𝑥𝑦𝐴) → 𝑥𝐴))
4 setindel 4574 . 2 (∀𝑥(∀𝑦(𝑦𝑥𝑦𝐴) → 𝑥𝐴) → 𝐴 = V)
53, 4sylbi 121 1 (∀𝑥(𝑥𝐴𝑥𝐴) → 𝐴 = V)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-ral 2480  df-v 2765  df-in 3163  df-ss 3170
This theorem is referenced by:  setind2  4576
  Copyright terms: Public domain W3C validator