ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setind GIF version

Theorem setind 4608
Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
setind (∀𝑥(𝑥𝐴𝑥𝐴) → 𝐴 = V)
Distinct variable group:   𝑥,𝐴

Proof of Theorem setind
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssalel 3192 . . . 4 (𝑥𝐴 ↔ ∀𝑦(𝑦𝑥𝑦𝐴))
21imbi1i 238 . . 3 ((𝑥𝐴𝑥𝐴) ↔ (∀𝑦(𝑦𝑥𝑦𝐴) → 𝑥𝐴))
32albii 1496 . 2 (∀𝑥(𝑥𝐴𝑥𝐴) ↔ ∀𝑥(∀𝑦(𝑦𝑥𝑦𝐴) → 𝑥𝐴))
4 setindel 4607 . 2 (∀𝑥(∀𝑦(𝑦𝑥𝑦𝐴) → 𝑥𝐴) → 𝐴 = V)
53, 4sylbi 121 1 (∀𝑥(𝑥𝐴𝑥𝐴) → 𝐴 = V)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1373   = wceq 1375  wcel 2180  Vcvv 2779  wss 3177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191  ax-setind 4606
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-ral 2493  df-v 2781  df-in 3183  df-ss 3190
This theorem is referenced by:  setind2  4609
  Copyright terms: Public domain W3C validator