ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setind GIF version

Theorem setind 4462
Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
setind (∀𝑥(𝑥𝐴𝑥𝐴) → 𝐴 = V)
Distinct variable group:   𝑥,𝐴

Proof of Theorem setind
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfss2 3091 . . . 4 (𝑥𝐴 ↔ ∀𝑦(𝑦𝑥𝑦𝐴))
21imbi1i 237 . . 3 ((𝑥𝐴𝑥𝐴) ↔ (∀𝑦(𝑦𝑥𝑦𝐴) → 𝑥𝐴))
32albii 1447 . 2 (∀𝑥(𝑥𝐴𝑥𝐴) ↔ ∀𝑥(∀𝑦(𝑦𝑥𝑦𝐴) → 𝑥𝐴))
4 setindel 4461 . 2 (∀𝑥(∀𝑦(𝑦𝑥𝑦𝐴) → 𝑥𝐴) → 𝐴 = V)
53, 4sylbi 120 1 (∀𝑥(𝑥𝐴𝑥𝐴) → 𝐴 = V)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1330   = wceq 1332  wcel 1481  Vcvv 2689  wss 3076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-ral 2422  df-v 2691  df-in 3082  df-ss 3089
This theorem is referenced by:  setind2  4463
  Copyright terms: Public domain W3C validator