ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snelpw Unicode version

Theorem snelpw 4191
Description: A singleton of a set belongs to the power class of a class containing the set. (Contributed by NM, 1-Apr-1998.)
Hypothesis
Ref Expression
snelpw.1  |-  A  e. 
_V
Assertion
Ref Expression
snelpw  |-  ( A  e.  B  <->  { A }  e.  ~P B
)

Proof of Theorem snelpw
StepHypRef Expression
1 snelpw.1 . . 3  |-  A  e. 
_V
21snss 3702 . 2  |-  ( A  e.  B  <->  { A }  C_  B )
31snex 4164 . . 3  |-  { A }  e.  _V
43elpw 3565 . 2  |-  ( { A }  e.  ~P B 
<->  { A }  C_  B )
52, 4bitr4i 186 1  |-  ( A  e.  B  <->  { A }  e.  ~P B
)
Colors of variables: wff set class
Syntax hints:    <-> wb 104    e. wcel 2136   _Vcvv 2726    C_ wss 3116   ~Pcpw 3559   {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator