ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snelpw Unicode version

Theorem snelpw 4073
Description: A singleton of a set belongs to the power class of a class containing the set. (Contributed by NM, 1-Apr-1998.)
Hypothesis
Ref Expression
snelpw.1  |-  A  e. 
_V
Assertion
Ref Expression
snelpw  |-  ( A  e.  B  <->  { A }  e.  ~P B
)

Proof of Theorem snelpw
StepHypRef Expression
1 snelpw.1 . . 3  |-  A  e. 
_V
21snss 3596 . 2  |-  ( A  e.  B  <->  { A }  C_  B )
31snex 4049 . . 3  |-  { A }  e.  _V
43elpw 3463 . 2  |-  ( { A }  e.  ~P B 
<->  { A }  C_  B )
52, 4bitr4i 186 1  |-  ( A  e.  B  <->  { A }  e.  ~P B
)
Colors of variables: wff set class
Syntax hints:    <-> wb 104    e. wcel 1448   _Vcvv 2641    C_ wss 3021   ~Pcpw 3457   {csn 3474
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator