ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snelpwi Unicode version

Theorem snelpwi 4273
Description: A singleton of a set belongs to the power class of a class containing the set. (Contributed by Alan Sare, 25-Aug-2011.)
Assertion
Ref Expression
snelpwi  |-  ( A  e.  B  ->  { A }  e.  ~P B
)

Proof of Theorem snelpwi
StepHypRef Expression
1 snssi 3788 . 2  |-  ( A  e.  B  ->  { A }  C_  B )
2 elex 2788 . . 3  |-  ( A  e.  B  ->  A  e.  _V )
3 snexg 4244 . . 3  |-  ( A  e.  _V  ->  { A }  e.  _V )
4 elpwg 3634 . . 3  |-  ( { A }  e.  _V  ->  ( { A }  e.  ~P B  <->  { A }  C_  B ) )
52, 3, 43syl 17 . 2  |-  ( A  e.  B  ->  ( { A }  e.  ~P B 
<->  { A }  C_  B ) )
61, 5mpbird 167 1  |-  ( A  e.  B  ->  { A }  e.  ~P B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2178   _Vcvv 2776    C_ wss 3174   ~Pcpw 3626   {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649
This theorem is referenced by:  unipw  4279  infpwfidom  7337  txdis  14864  txdis1cn  14865
  Copyright terms: Public domain W3C validator