ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snelpwi Unicode version

Theorem snelpwi 4195
Description: A singleton of a set belongs to the power class of a class containing the set. (Contributed by Alan Sare, 25-Aug-2011.)
Assertion
Ref Expression
snelpwi  |-  ( A  e.  B  ->  { A }  e.  ~P B
)

Proof of Theorem snelpwi
StepHypRef Expression
1 snssi 3722 . 2  |-  ( A  e.  B  ->  { A }  C_  B )
2 elex 2741 . . 3  |-  ( A  e.  B  ->  A  e.  _V )
3 snexg 4168 . . 3  |-  ( A  e.  _V  ->  { A }  e.  _V )
4 elpwg 3572 . . 3  |-  ( { A }  e.  _V  ->  ( { A }  e.  ~P B  <->  { A }  C_  B ) )
52, 3, 43syl 17 . 2  |-  ( A  e.  B  ->  ( { A }  e.  ~P B 
<->  { A }  C_  B ) )
61, 5mpbird 166 1  |-  ( A  e.  B  ->  { A }  e.  ~P B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2141   _Vcvv 2730    C_ wss 3121   ~Pcpw 3564   {csn 3581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587
This theorem is referenced by:  unipw  4200  infpwfidom  7162  txdis  12992  txdis1cn  12993
  Copyright terms: Public domain W3C validator