![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snelpw | GIF version |
Description: A singleton of a set belongs to the power class of a class containing the set. (Contributed by NM, 1-Apr-1998.) |
Ref | Expression |
---|---|
snelpw.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snelpw | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snelpw.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | snss 3754 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
3 | 1 | snex 4215 | . . 3 ⊢ {𝐴} ∈ V |
4 | 3 | elpw 3608 | . 2 ⊢ ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵) |
5 | 2, 4 | bitr4i 187 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3154 𝒫 cpw 3602 {csn 3619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |