ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snelpw GIF version

Theorem snelpw 4242
Description: A singleton of a set belongs to the power class of a class containing the set. (Contributed by NM, 1-Apr-1998.)
Hypothesis
Ref Expression
snelpw.1 𝐴 ∈ V
Assertion
Ref Expression
snelpw (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)

Proof of Theorem snelpw
StepHypRef Expression
1 snelpw.1 . . 3 𝐴 ∈ V
21snss 3753 . 2 (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵)
31snex 4214 . . 3 {𝐴} ∈ V
43elpw 3607 . 2 ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵)
52, 4bitr4i 187 1 (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2164  Vcvv 2760  wss 3153  𝒫 cpw 3601  {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator