ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snelpw GIF version

Theorem snelpw 4265
Description: A singleton of a set belongs to the power class of a class containing the set. (Contributed by NM, 1-Apr-1998.)
Hypothesis
Ref Expression
snelpw.1 𝐴 ∈ V
Assertion
Ref Expression
snelpw (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)

Proof of Theorem snelpw
StepHypRef Expression
1 snelpw.1 . . 3 𝐴 ∈ V
21snss 3774 . 2 (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵)
31snex 4237 . . 3 {𝐴} ∈ V
43elpw 3627 . 2 ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵)
52, 4bitr4i 187 1 (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2177  Vcvv 2773  wss 3170  𝒫 cpw 3621  {csn 3638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator