ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snelpw GIF version

Theorem snelpw 4064
Description: A singleton of a set belongs to the power class of a class containing the set. (Contributed by NM, 1-Apr-1998.)
Hypothesis
Ref Expression
snelpw.1 𝐴 ∈ V
Assertion
Ref Expression
snelpw (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)

Proof of Theorem snelpw
StepHypRef Expression
1 snelpw.1 . . 3 𝐴 ∈ V
21snss 3588 . 2 (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵)
31snex 4041 . . 3 {𝐴} ∈ V
43elpw 3455 . 2 ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵)
52, 4bitr4i 186 1 (𝐴𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 1445  Vcvv 2633  wss 3013  𝒫 cpw 3449  {csn 3466
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-v 2635  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator