ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prelpwi Unicode version

Theorem prelpwi 4299
Description: A pair of two sets belongs to the power class of a class containing those two sets. (Contributed by Thierry Arnoux, 10-Mar-2017.)
Assertion
Ref Expression
prelpwi  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  e.  ~P C
)

Proof of Theorem prelpwi
StepHypRef Expression
1 prssi 3825 . 2  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  C_  C )
2 prexg 4294 . . 3  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  e.  _V )
3 elpwg 3657 . . 3  |-  ( { A ,  B }  e.  _V  ->  ( { A ,  B }  e.  ~P C  <->  { A ,  B }  C_  C
) )
42, 3syl 14 . 2  |-  ( ( A  e.  C  /\  B  e.  C )  ->  ( { A ,  B }  e.  ~P C 
<->  { A ,  B }  C_  C ) )
51, 4mpbird 167 1  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  e.  ~P C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   _Vcvv 2799    C_ wss 3197   ~Pcpw 3649   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator