ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prelpwi Unicode version

Theorem prelpwi 4192
Description: A pair of two sets belongs to the power class of a class containing those two sets. (Contributed by Thierry Arnoux, 10-Mar-2017.)
Assertion
Ref Expression
prelpwi  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  e.  ~P C
)

Proof of Theorem prelpwi
StepHypRef Expression
1 prssi 3731 . 2  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  C_  C )
2 prexg 4189 . . 3  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  e.  _V )
3 elpwg 3567 . . 3  |-  ( { A ,  B }  e.  _V  ->  ( { A ,  B }  e.  ~P C  <->  { A ,  B }  C_  C
) )
42, 3syl 14 . 2  |-  ( ( A  e.  C  /\  B  e.  C )  ->  ( { A ,  B }  e.  ~P C 
<->  { A ,  B }  C_  C ) )
51, 4mpbird 166 1  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  e.  ~P C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   _Vcvv 2726    C_ wss 3116   ~Pcpw 3559   {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator