ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prelpwi Unicode version

Theorem prelpwi 4247
Description: A pair of two sets belongs to the power class of a class containing those two sets. (Contributed by Thierry Arnoux, 10-Mar-2017.)
Assertion
Ref Expression
prelpwi  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  e.  ~P C
)

Proof of Theorem prelpwi
StepHypRef Expression
1 prssi 3780 . 2  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  C_  C )
2 prexg 4244 . . 3  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  e.  _V )
3 elpwg 3613 . . 3  |-  ( { A ,  B }  e.  _V  ->  ( { A ,  B }  e.  ~P C  <->  { A ,  B }  C_  C
) )
42, 3syl 14 . 2  |-  ( ( A  e.  C  /\  B  e.  C )  ->  ( { A ,  B }  e.  ~P C 
<->  { A ,  B }  C_  C ) )
51, 4mpbird 167 1  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  e.  ~P C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   _Vcvv 2763    C_ wss 3157   ~Pcpw 3605   {cpr 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator