ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snelpwg Unicode version

Theorem snelpwg 4295
Description: A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998.) Put in closed form and avoid ax-nul 4209. (Revised by BJ, 17-Jan-2025.)
Assertion
Ref Expression
snelpwg  |-  ( A  e.  V  ->  ( A  e.  B  <->  { A }  e.  ~P B
) )

Proof of Theorem snelpwg
StepHypRef Expression
1 snssg 3801 . 2  |-  ( A  e.  V  ->  ( A  e.  B  <->  { A }  C_  B ) )
2 snexg 4267 . . 3  |-  ( A  e.  V  ->  { A }  e.  _V )
3 elpwg 3657 . . 3  |-  ( { A }  e.  _V  ->  ( { A }  e.  ~P B  <->  { A }  C_  B ) )
42, 3syl 14 . 2  |-  ( A  e.  V  ->  ( { A }  e.  ~P B 
<->  { A }  C_  B ) )
51, 4bitr4d 191 1  |-  ( A  e.  V  ->  ( A  e.  B  <->  { A }  e.  ~P B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2200   _Vcvv 2799    C_ wss 3197   ~Pcpw 3649   {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator