ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snelpwg Unicode version

Theorem snelpwg 4267
Description: A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998.) Put in closed form and avoid ax-nul 4181. (Revised by BJ, 17-Jan-2025.)
Assertion
Ref Expression
snelpwg  |-  ( A  e.  V  ->  ( A  e.  B  <->  { A }  e.  ~P B
) )

Proof of Theorem snelpwg
StepHypRef Expression
1 snssg 3773 . 2  |-  ( A  e.  V  ->  ( A  e.  B  <->  { A }  C_  B ) )
2 snexg 4239 . . 3  |-  ( A  e.  V  ->  { A }  e.  _V )
3 elpwg 3629 . . 3  |-  ( { A }  e.  _V  ->  ( { A }  e.  ~P B  <->  { A }  C_  B ) )
42, 3syl 14 . 2  |-  ( A  e.  V  ->  ( { A }  e.  ~P B 
<->  { A }  C_  B ) )
51, 4bitr4d 191 1  |-  ( A  e.  V  ->  ( A  e.  B  <->  { A }  e.  ~P B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2177   _Vcvv 2773    C_ wss 3170   ~Pcpw 3621   {csn 3638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator