ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prexg Unicode version

Theorem prexg 4241
Description: The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51, but restricted to classes which exist. For proper classes, see prprc 3729, prprc1 3727, and prprc2 3728. (Contributed by Jim Kingdon, 16-Sep-2018.)
Assertion
Ref Expression
prexg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { A ,  B }  e.  _V )

Proof of Theorem prexg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq2 3697 . . . . . 6  |-  ( y  =  B  ->  { x ,  y }  =  { x ,  B } )
21eleq1d 2262 . . . . 5  |-  ( y  =  B  ->  ( { x ,  y }  e.  _V  <->  { x ,  B }  e.  _V ) )
3 zfpair2 4240 . . . . 5  |-  { x ,  y }  e.  _V
42, 3vtoclg 2821 . . . 4  |-  ( B  e.  W  ->  { x ,  B }  e.  _V )
5 preq1 3696 . . . . 5  |-  ( x  =  A  ->  { x ,  B }  =  { A ,  B }
)
65eleq1d 2262 . . . 4  |-  ( x  =  A  ->  ( { x ,  B }  e.  _V  <->  { A ,  B }  e.  _V ) )
74, 6imbitrid 154 . . 3  |-  ( x  =  A  ->  ( B  e.  W  ->  { A ,  B }  e.  _V ) )
87vtocleg 2832 . 2  |-  ( A  e.  V  ->  ( B  e.  W  ->  { A ,  B }  e.  _V ) )
98imp 124 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { A ,  B }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760   {cpr 3620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-sn 3625  df-pr 3626
This theorem is referenced by:  prelpwi  4244  opexg  4258  opi2  4263  opth  4267  opeqsn  4282  opeqpr  4283  uniop  4285  unex  4473  tpexg  4476  op1stb  4510  op1stbg  4511  onun2  4523  opthreg  4589  relop  4813  acexmidlemv  5917  pw2f1odclem  6892  pr2ne  7254  exmidonfinlem  7255  exmidaclem  7270  sup3exmid  8978  xrex  9925  2strbasg  12740  2stropg  12741  prdsex  12883  xpsfval  12934  xpsval  12938  gsumprval  12985  isomninnlem  15590  trilpolemlt1  15601  iswomninnlem  15609  iswomni0  15611  ismkvnnlem  15612
  Copyright terms: Public domain W3C validator