ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prexg Unicode version

Theorem prexg 4240
Description: The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51, but restricted to classes which exist. For proper classes, see prprc 3728, prprc1 3726, and prprc2 3727. (Contributed by Jim Kingdon, 16-Sep-2018.)
Assertion
Ref Expression
prexg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { A ,  B }  e.  _V )

Proof of Theorem prexg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq2 3696 . . . . . 6  |-  ( y  =  B  ->  { x ,  y }  =  { x ,  B } )
21eleq1d 2262 . . . . 5  |-  ( y  =  B  ->  ( { x ,  y }  e.  _V  <->  { x ,  B }  e.  _V ) )
3 zfpair2 4239 . . . . 5  |-  { x ,  y }  e.  _V
42, 3vtoclg 2820 . . . 4  |-  ( B  e.  W  ->  { x ,  B }  e.  _V )
5 preq1 3695 . . . . 5  |-  ( x  =  A  ->  { x ,  B }  =  { A ,  B }
)
65eleq1d 2262 . . . 4  |-  ( x  =  A  ->  ( { x ,  B }  e.  _V  <->  { A ,  B }  e.  _V ) )
74, 6imbitrid 154 . . 3  |-  ( x  =  A  ->  ( B  e.  W  ->  { A ,  B }  e.  _V ) )
87vtocleg 2831 . 2  |-  ( A  e.  V  ->  ( B  e.  W  ->  { A ,  B }  e.  _V ) )
98imp 124 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { A ,  B }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760   {cpr 3619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625
This theorem is referenced by:  prelpwi  4243  opexg  4257  opi2  4262  opth  4266  opeqsn  4281  opeqpr  4282  uniop  4284  unex  4472  tpexg  4475  op1stb  4509  op1stbg  4510  onun2  4522  opthreg  4588  relop  4812  acexmidlemv  5916  pw2f1odclem  6890  pr2ne  7252  exmidonfinlem  7253  exmidaclem  7268  sup3exmid  8976  xrex  9922  2strbasg  12737  2stropg  12738  prdsex  12880  xpsfval  12931  xpsval  12935  gsumprval  12982  isomninnlem  15520  trilpolemlt1  15531  iswomninnlem  15539  iswomni0  15541  ismkvnnlem  15542
  Copyright terms: Public domain W3C validator