ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sneqi Unicode version

Theorem sneqi 3458
Description: Equality inference for singletons. (Contributed by NM, 22-Jan-2004.)
Hypothesis
Ref Expression
sneqi.1  |-  A  =  B
Assertion
Ref Expression
sneqi  |-  { A }  =  { B }

Proof of Theorem sneqi
StepHypRef Expression
1 sneqi.1 . 2  |-  A  =  B
2 sneq 3457 . 2  |-  ( A  =  B  ->  { A }  =  { B } )
31, 2ax-mp 7 1  |-  { A }  =  { B }
Colors of variables: wff set class
Syntax hints:    = wceq 1289   {csn 3446
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-11 1442  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-sn 3452
This theorem is referenced by:  fnressn  5483  fressnfv  5484  snriota  5637  xpassen  6546  strle1g  11583
  Copyright terms: Public domain W3C validator