ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sneqi Unicode version

Theorem sneqi 3645
Description: Equality inference for singletons. (Contributed by NM, 22-Jan-2004.)
Hypothesis
Ref Expression
sneqi.1  |-  A  =  B
Assertion
Ref Expression
sneqi  |-  { A }  =  { B }

Proof of Theorem sneqi
StepHypRef Expression
1 sneqi.1 . 2  |-  A  =  B
2 sneq 3644 . 2  |-  ( A  =  B  ->  { A }  =  { B } )
31, 2ax-mp 5 1  |-  { A }  =  { B }
Colors of variables: wff set class
Syntax hints:    = wceq 1373   {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-sn 3639
This theorem is referenced by:  funopsn  5762  fnressn  5770  fressnfv  5771  snriota  5929  xpassen  6925  ennnfonelem1  12778  strle1g  12938  imasplusg  13140  ghmeqker  13607
  Copyright terms: Public domain W3C validator