ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasplusg Unicode version

Theorem imasplusg 12894
Description: The group operation in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
imasbas.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasbas.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasbas.f  |-  ( ph  ->  F : V -onto-> B
)
imasbas.r  |-  ( ph  ->  R  e.  Z )
imasplusg.p  |-  .+  =  ( +g  `  R )
imasplusg.a  |-  .+b  =  ( +g  `  U )
Assertion
Ref Expression
imasplusg  |-  ( ph  -> 
.+b  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>. } )
Distinct variable groups:    F, p, q    R, p, q    V, p, q    ph, p, q
Allowed substitution hints:    B( q, p)    .+ ( q, p)    .+b ( q, p)    U( q, p)    Z( q, p)

Proof of Theorem imasplusg
StepHypRef Expression
1 imasplusg.a . . 3  |-  .+b  =  ( +g  `  U )
2 imasbas.u . . . . . 6  |-  ( ph  ->  U  =  ( F 
"s  R ) )
3 imasbas.v . . . . . 6  |-  ( ph  ->  V  =  ( Base `  R ) )
4 eqid 2193 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
5 eqid 2193 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
6 eqid 2193 . . . . . 6  |-  ( .s
`  R )  =  ( .s `  R
)
7 eqidd 2194 . . . . . 6  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } )
8 eqidd 2194 . . . . . 6  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } )
9 imasbas.f . . . . . 6  |-  ( ph  ->  F : V -onto-> B
)
10 imasbas.r . . . . . 6  |-  ( ph  ->  R  e.  Z )
112, 3, 4, 5, 6, 7, 8, 9, 10imasival 12892 . . . . 5  |-  ( ph  ->  U  =  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. } )
1211fveq1d 5557 . . . 4  |-  ( ph  ->  ( U `  ( +g  `  ndx ) )  =  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. } `
 ( +g  `  ndx ) ) )
13 basendxnn 12677 . . . . . . . 8  |-  ( Base `  ndx )  e.  NN
14 basfn 12679 . . . . . . . . . . 11  |-  Base  Fn  _V
1510elexd 2773 . . . . . . . . . . 11  |-  ( ph  ->  R  e.  _V )
16 funfvex 5572 . . . . . . . . . . . 12  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1716funfni 5355 . . . . . . . . . . 11  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1814, 15, 17sylancr 414 . . . . . . . . . 10  |-  ( ph  ->  ( Base `  R
)  e.  _V )
193, 18eqeltrd 2270 . . . . . . . . 9  |-  ( ph  ->  V  e.  _V )
20 focdmex 6169 . . . . . . . . 9  |-  ( V  e.  _V  ->  ( F : V -onto-> B  ->  B  e.  _V )
)
2119, 9, 20sylc 62 . . . . . . . 8  |-  ( ph  ->  B  e.  _V )
22 opexg 4258 . . . . . . . 8  |-  ( ( ( Base `  ndx )  e.  NN  /\  B  e.  _V )  ->  <. ( Base `  ndx ) ,  B >.  e.  _V )
2313, 21, 22sylancr 414 . . . . . . 7  |-  ( ph  -> 
<. ( Base `  ndx ) ,  B >.  e. 
_V )
24 plusgndxnn 12732 . . . . . . . 8  |-  ( +g  ` 
ndx )  e.  NN
25 fof 5477 . . . . . . . . . . . . . . . . . 18  |-  ( F : V -onto-> B  ->  F : V --> B )
269, 25syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F : V --> B )
2726, 19fexd 5789 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F  e.  _V )
28 vex 2763 . . . . . . . . . . . . . . . 16  |-  p  e. 
_V
29 fvexg 5574 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  _V  /\  p  e.  _V )  ->  ( F `  p
)  e.  _V )
3027, 28, 29sylancl 413 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F `  p
)  e.  _V )
31 vex 2763 . . . . . . . . . . . . . . . 16  |-  q  e. 
_V
32 fvexg 5574 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  _V  /\  q  e.  _V )  ->  ( F `  q
)  e.  _V )
3327, 31, 32sylancl 413 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F `  q
)  e.  _V )
34 opexg 4258 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  p
)  e.  _V  /\  ( F `  q )  e.  _V )  ->  <. ( F `  p
) ,  ( F `
 q ) >.  e.  _V )
3530, 33, 34syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ph  -> 
<. ( F `  p
) ,  ( F `
 q ) >.  e.  _V )
3628a1i 9 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  p  e.  _V )
37 plusgslid 12733 . . . . . . . . . . . . . . . . . 18  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
3837slotex 12648 . . . . . . . . . . . . . . . . 17  |-  ( R  e.  Z  ->  ( +g  `  R )  e. 
_V )
3910, 38syl 14 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( +g  `  R
)  e.  _V )
4031a1i 9 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  q  e.  _V )
41 ovexg 5953 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  _V  /\  ( +g  `  R )  e.  _V  /\  q  e.  _V )  ->  (
p ( +g  `  R
) q )  e. 
_V )
4236, 39, 40, 41syl3anc 1249 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( p ( +g  `  R ) q )  e.  _V )
43 fvexg 5574 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  _V  /\  ( p ( +g  `  R ) q )  e.  _V )  -> 
( F `  (
p ( +g  `  R
) q ) )  e.  _V )
4427, 42, 43syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F `  (
p ( +g  `  R
) q ) )  e.  _V )
45 opexg 4258 . . . . . . . . . . . . . 14  |-  ( (
<. ( F `  p
) ,  ( F `
 q ) >.  e.  _V  /\  ( F `
 ( p ( +g  `  R ) q ) )  e. 
_V )  ->  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>.  e.  _V )
4635, 44, 45syl2anc 411 . . . . . . . . . . . . 13  |-  ( ph  -> 
<. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >.  e.  _V )
47 snexg 4214 . . . . . . . . . . . . 13  |-  ( <. <. ( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p ( +g  `  R ) q ) ) >.  e.  _V  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
4846, 47syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
4948ralrimivw 2568 . . . . . . . . . . 11  |-  ( ph  ->  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
50 iunexg 6173 . . . . . . . . . . 11  |-  ( ( V  e.  _V  /\  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
5119, 49, 50syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
5251ralrimivw 2568 . . . . . . . . 9  |-  ( ph  ->  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
53 iunexg 6173 . . . . . . . . 9  |-  ( ( V  e.  _V  /\  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
5419, 52, 53syl2anc 411 . . . . . . . 8  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
55 opexg 4258 . . . . . . . 8  |-  ( ( ( +g  `  ndx )  e.  NN  /\  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. }  e.  _V )  -> 
<. ( +g  `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >.  e.  _V )
5624, 54, 55sylancr 414 . . . . . . 7  |-  ( ph  -> 
<. ( +g  `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >.  e.  _V )
57 mulrslid 12752 . . . . . . . . 9  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
5857simpri 113 . . . . . . . 8  |-  ( .r
`  ndx )  e.  NN
5957slotex 12648 . . . . . . . . . . . . . . . . 17  |-  ( R  e.  Z  ->  ( .r `  R )  e. 
_V )
6010, 59syl 14 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( .r `  R
)  e.  _V )
61 ovexg 5953 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  _V  /\  ( .r `  R )  e.  _V  /\  q  e.  _V )  ->  (
p ( .r `  R ) q )  e.  _V )
6236, 60, 40, 61syl3anc 1249 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( p ( .r
`  R ) q )  e.  _V )
63 fvexg 5574 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  _V  /\  ( p ( .r
`  R ) q )  e.  _V )  ->  ( F `  (
p ( .r `  R ) q ) )  e.  _V )
6427, 62, 63syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F `  (
p ( .r `  R ) q ) )  e.  _V )
65 opexg 4258 . . . . . . . . . . . . . 14  |-  ( (
<. ( F `  p
) ,  ( F `
 q ) >.  e.  _V  /\  ( F `
 ( p ( .r `  R ) q ) )  e. 
_V )  ->  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>.  e.  _V )
6635, 64, 65syl2anc 411 . . . . . . . . . . . . 13  |-  ( ph  -> 
<. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >.  e.  _V )
67 snexg 4214 . . . . . . . . . . . . 13  |-  ( <. <. ( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p ( .r
`  R ) q ) ) >.  e.  _V  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )
6866, 67syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )
6968ralrimivw 2568 . . . . . . . . . . 11  |-  ( ph  ->  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )
70 iunexg 6173 . . . . . . . . . . 11  |-  ( ( V  e.  _V  /\  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. }  e.  _V )
7119, 69, 70syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )
7271ralrimivw 2568 . . . . . . . . 9  |-  ( ph  ->  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )
73 iunexg 6173 . . . . . . . . 9  |-  ( ( V  e.  _V  /\  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. }  e.  _V )
7419, 72, 73syl2anc 411 . . . . . . . 8  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )
75 opexg 4258 . . . . . . . 8  |-  ( ( ( .r `  ndx )  e.  NN  /\  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. }  e.  _V )  -> 
<. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. } >.  e.  _V )
7658, 74, 75sylancr 414 . . . . . . 7  |-  ( ph  -> 
<. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. } >.  e.  _V )
77 tpexg 4476 . . . . . . 7  |-  ( (
<. ( Base `  ndx ) ,  B >.  e. 
_V  /\  <. ( +g  ` 
ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >.  e.  _V  /\ 
<. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. } >.  e.  _V )  ->  { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  e.  _V )
7823, 56, 76, 77syl3anc 1249 . . . . . 6  |-  ( ph  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  e.  _V )
7911, 78eqeltrd 2270 . . . . 5  |-  ( ph  ->  U  e.  _V )
80 plusgid 12731 . . . . 5  |-  +g  = Slot  ( +g  `  ndx )
8179, 80, 24strndxid 12649 . . . 4  |-  ( ph  ->  ( U `  ( +g  `  ndx ) )  =  ( +g  `  U
) )
8224a1i 9 . . . . 5  |-  ( ph  ->  ( +g  `  ndx )  e.  NN )
83 basendxnplusgndx 12745 . . . . . 6  |-  ( Base `  ndx )  =/=  ( +g  `  ndx )
8483a1i 9 . . . . 5  |-  ( ph  ->  ( Base `  ndx )  =/=  ( +g  `  ndx ) )
85 plusgndxnmulrndx 12753 . . . . . 6  |-  ( +g  ` 
ndx )  =/=  ( .r `  ndx )
8685a1i 9 . . . . 5  |-  ( ph  ->  ( +g  `  ndx )  =/=  ( .r `  ndx ) )
87 fvtp2g 5768 . . . . 5  |-  ( ( ( ( +g  `  ndx )  e.  NN  /\  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. }  e.  _V )  /\  ( ( Base `  ndx )  =/=  ( +g  `  ndx )  /\  ( +g  `  ndx )  =/=  ( .r `  ndx ) ) )  -> 
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. } `
 ( +g  `  ndx ) )  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } )
8882, 54, 84, 86, 87syl22anc 1250 . . . 4  |-  ( ph  ->  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. } `
 ( +g  `  ndx ) )  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } )
8912, 81, 883eqtr3rd 2235 . . 3  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  =  ( +g  `  U ) )
901, 89eqtr4id 2245 . 2  |-  ( ph  -> 
.+b  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } )
91 imasplusg.p . . . . . . . . . 10  |-  .+  =  ( +g  `  R )
9291oveqi 5932 . . . . . . . . 9  |-  ( p 
.+  q )  =  ( p ( +g  `  R ) q )
9392fveq2i 5558 . . . . . . . 8  |-  ( F `
 ( p  .+  q ) )  =  ( F `  (
p ( +g  `  R
) q ) )
9493opeq2i 3809 . . . . . . 7  |-  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>.  =  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>.
9594sneqi 3631 . . . . . 6  |-  { <. <.
( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .+  q ) ) >. }  =  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }
9695a1i 9 . . . . 5  |-  ( q  e.  V  ->  { <. <.
( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .+  q ) ) >. }  =  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } )
9796iuneq2i 3931 . . . 4  |-  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>. }  =  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. }
9897a1i 9 . . 3  |-  ( p  e.  V  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>. }  =  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } )
9998iuneq2i 3931 . 2  |-  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. }
10090, 99eqtr4di 2244 1  |-  ( ph  -> 
.+b  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.+  q ) )
>. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164    =/= wne 2364   A.wral 2472   _Vcvv 2760   {csn 3619   {ctp 3621   <.cop 3622   U_ciun 3913    Fn wfn 5250   -->wf 5251   -onto->wfo 5253   ` cfv 5255  (class class class)co 5919   NNcn 8984   ndxcnx 12618  Slot cslot 12620   Basecbs 12621   +g cplusg 12698   .rcmulr 12699   .scvsca 12702    "s cimas 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mulr 12712  df-iimas 12888
This theorem is referenced by:  imasaddfn  12903  imasaddval  12904  imasaddf  12905  qusaddval  12921  qusaddf  12922
  Copyright terms: Public domain W3C validator