ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strle1g Unicode version

Theorem strle1g 13023
Description: Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
Hypotheses
Ref Expression
strle1.i  |-  I  e.  NN
strle1.a  |-  A  =  I
Assertion
Ref Expression
strle1g  |-  ( X  e.  V  ->  { <. A ,  X >. } Struct  <. I ,  I >. )

Proof of Theorem strle1g
StepHypRef Expression
1 strle1.i . . . 4  |-  I  e.  NN
21nnrei 9075 . . . . 5  |-  I  e.  RR
32leidi 8588 . . . 4  |-  I  <_  I
41, 1, 33pm3.2i 1178 . . 3  |-  ( I  e.  NN  /\  I  e.  NN  /\  I  <_  I )
54a1i 9 . 2  |-  ( X  e.  V  ->  (
I  e.  NN  /\  I  e.  NN  /\  I  <_  I ) )
6 difss 3303 . . 3  |-  ( {
<. A ,  X >. } 
\  { (/) } ) 
C_  { <. A ,  X >. }
7 strle1.a . . . . 5  |-  A  =  I
87, 1eqeltri 2279 . . . 4  |-  A  e.  NN
9 funsng 5334 . . . 4  |-  ( ( A  e.  NN  /\  X  e.  V )  ->  Fun  { <. A ,  X >. } )
108, 9mpan 424 . . 3  |-  ( X  e.  V  ->  Fun  {
<. A ,  X >. } )
11 funss 5304 . . 3  |-  ( ( { <. A ,  X >. }  \  { (/) } )  C_  { <. A ,  X >. }  ->  ( Fun  { <. A ,  X >. }  ->  Fun  ( {
<. A ,  X >. } 
\  { (/) } ) ) )
126, 10, 11mpsyl 65 . 2  |-  ( X  e.  V  ->  Fun  ( { <. A ,  X >. }  \  { (/) } ) )
13 opexg 4285 . . . 4  |-  ( ( A  e.  NN  /\  X  e.  V )  -> 
<. A ,  X >.  e. 
_V )
148, 13mpan 424 . . 3  |-  ( X  e.  V  ->  <. A ,  X >.  e.  _V )
15 snexg 4239 . . 3  |-  ( <. A ,  X >.  e. 
_V  ->  { <. A ,  X >. }  e.  _V )
1614, 15syl 14 . 2  |-  ( X  e.  V  ->  { <. A ,  X >. }  e.  _V )
17 dmsnopg 5168 . . . 4  |-  ( X  e.  V  ->  dom  {
<. A ,  X >. }  =  { A }
)
187sneqi 3650 . . . . 5  |-  { A }  =  { I }
191nnzi 9423 . . . . . 6  |-  I  e.  ZZ
20 fzsn 10218 . . . . . 6  |-  ( I  e.  ZZ  ->  (
I ... I )  =  { I } )
2119, 20ax-mp 5 . . . . 5  |-  ( I ... I )  =  { I }
2218, 21eqtr4i 2230 . . . 4  |-  { A }  =  ( I ... I )
2317, 22eqtrdi 2255 . . 3  |-  ( X  e.  V  ->  dom  {
<. A ,  X >. }  =  ( I ... I ) )
24 eqimss 3251 . . 3  |-  ( dom 
{ <. A ,  X >. }  =  ( I ... I )  ->  dom  { <. A ,  X >. }  C_  ( I ... I ) )
2523, 24syl 14 . 2  |-  ( X  e.  V  ->  dom  {
<. A ,  X >. } 
C_  ( I ... I ) )
26 isstructr 12932 . 2  |-  ( ( ( I  e.  NN  /\  I  e.  NN  /\  I  <_  I )  /\  ( Fun  ( { <. A ,  X >. }  \  { (/) } )  /\  {
<. A ,  X >. }  e.  _V  /\  dom  {
<. A ,  X >. } 
C_  ( I ... I ) ) )  ->  { <. A ,  X >. } Struct  <. I ,  I >. )
275, 12, 16, 25, 26syl13anc 1252 1  |-  ( X  e.  V  ->  { <. A ,  X >. } Struct  <. I ,  I >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2177   _Vcvv 2773    \ cdif 3167    C_ wss 3170   (/)c0 3464   {csn 3638   <.cop 3641   class class class wbr 4054   dom cdm 4688   Fun wfun 5279  (class class class)co 5962    <_ cle 8138   NNcn 9066   ZZcz 9402   ...cfz 10160   Struct cstr 12913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-inn 9067  df-z 9403  df-uz 9679  df-fz 10161  df-struct 12919
This theorem is referenced by:  strle2g  13024  strle3g  13025  1strstrg  13033  srngstrd  13063  lmodstrd  13081  cnfldstr  14405
  Copyright terms: Public domain W3C validator