ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strle1g Unicode version

Theorem strle1g 12567
Description: Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
Hypotheses
Ref Expression
strle1.i  |-  I  e.  NN
strle1.a  |-  A  =  I
Assertion
Ref Expression
strle1g  |-  ( X  e.  V  ->  { <. A ,  X >. } Struct  <. I ,  I >. )

Proof of Theorem strle1g
StepHypRef Expression
1 strle1.i . . . 4  |-  I  e.  NN
21nnrei 8930 . . . . 5  |-  I  e.  RR
32leidi 8444 . . . 4  |-  I  <_  I
41, 1, 33pm3.2i 1175 . . 3  |-  ( I  e.  NN  /\  I  e.  NN  /\  I  <_  I )
54a1i 9 . 2  |-  ( X  e.  V  ->  (
I  e.  NN  /\  I  e.  NN  /\  I  <_  I ) )
6 difss 3263 . . 3  |-  ( {
<. A ,  X >. } 
\  { (/) } ) 
C_  { <. A ,  X >. }
7 strle1.a . . . . 5  |-  A  =  I
87, 1eqeltri 2250 . . . 4  |-  A  e.  NN
9 funsng 5264 . . . 4  |-  ( ( A  e.  NN  /\  X  e.  V )  ->  Fun  { <. A ,  X >. } )
108, 9mpan 424 . . 3  |-  ( X  e.  V  ->  Fun  {
<. A ,  X >. } )
11 funss 5237 . . 3  |-  ( ( { <. A ,  X >. }  \  { (/) } )  C_  { <. A ,  X >. }  ->  ( Fun  { <. A ,  X >. }  ->  Fun  ( {
<. A ,  X >. } 
\  { (/) } ) ) )
126, 10, 11mpsyl 65 . 2  |-  ( X  e.  V  ->  Fun  ( { <. A ,  X >. }  \  { (/) } ) )
13 opexg 4230 . . . 4  |-  ( ( A  e.  NN  /\  X  e.  V )  -> 
<. A ,  X >.  e. 
_V )
148, 13mpan 424 . . 3  |-  ( X  e.  V  ->  <. A ,  X >.  e.  _V )
15 snexg 4186 . . 3  |-  ( <. A ,  X >.  e. 
_V  ->  { <. A ,  X >. }  e.  _V )
1614, 15syl 14 . 2  |-  ( X  e.  V  ->  { <. A ,  X >. }  e.  _V )
17 dmsnopg 5102 . . . 4  |-  ( X  e.  V  ->  dom  {
<. A ,  X >. }  =  { A }
)
187sneqi 3606 . . . . 5  |-  { A }  =  { I }
191nnzi 9276 . . . . . 6  |-  I  e.  ZZ
20 fzsn 10068 . . . . . 6  |-  ( I  e.  ZZ  ->  (
I ... I )  =  { I } )
2119, 20ax-mp 5 . . . . 5  |-  ( I ... I )  =  { I }
2218, 21eqtr4i 2201 . . . 4  |-  { A }  =  ( I ... I )
2317, 22eqtrdi 2226 . . 3  |-  ( X  e.  V  ->  dom  {
<. A ,  X >. }  =  ( I ... I ) )
24 eqimss 3211 . . 3  |-  ( dom 
{ <. A ,  X >. }  =  ( I ... I )  ->  dom  { <. A ,  X >. }  C_  ( I ... I ) )
2523, 24syl 14 . 2  |-  ( X  e.  V  ->  dom  {
<. A ,  X >. } 
C_  ( I ... I ) )
26 isstructr 12479 . 2  |-  ( ( ( I  e.  NN  /\  I  e.  NN  /\  I  <_  I )  /\  ( Fun  ( { <. A ,  X >. }  \  { (/) } )  /\  {
<. A ,  X >. }  e.  _V  /\  dom  {
<. A ,  X >. } 
C_  ( I ... I ) ) )  ->  { <. A ,  X >. } Struct  <. I ,  I >. )
275, 12, 16, 25, 26syl13anc 1240 1  |-  ( X  e.  V  ->  { <. A ,  X >. } Struct  <. I ,  I >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    = wceq 1353    e. wcel 2148   _Vcvv 2739    \ cdif 3128    C_ wss 3131   (/)c0 3424   {csn 3594   <.cop 3597   class class class wbr 4005   dom cdm 4628   Fun wfun 5212  (class class class)co 5877    <_ cle 7995   NNcn 8921   ZZcz 9255   ...cfz 10010   Struct cstr 12460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-z 9256  df-uz 9531  df-fz 10011  df-struct 12466
This theorem is referenced by:  strle2g  12568  strle3g  12569  1strstrg  12577  srngstrd  12606  lmodstrd  12624
  Copyright terms: Public domain W3C validator