ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strle1g Unicode version

Theorem strle1g 12088
Description: Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
Hypotheses
Ref Expression
strle1.i  |-  I  e.  NN
strle1.a  |-  A  =  I
Assertion
Ref Expression
strle1g  |-  ( X  e.  V  ->  { <. A ,  X >. } Struct  <. I ,  I >. )

Proof of Theorem strle1g
StepHypRef Expression
1 strle1.i . . . 4  |-  I  e.  NN
21nnrei 8753 . . . . 5  |-  I  e.  RR
32leidi 8271 . . . 4  |-  I  <_  I
41, 1, 33pm3.2i 1160 . . 3  |-  ( I  e.  NN  /\  I  e.  NN  /\  I  <_  I )
54a1i 9 . 2  |-  ( X  e.  V  ->  (
I  e.  NN  /\  I  e.  NN  /\  I  <_  I ) )
6 difss 3207 . . 3  |-  ( {
<. A ,  X >. } 
\  { (/) } ) 
C_  { <. A ,  X >. }
7 strle1.a . . . . 5  |-  A  =  I
87, 1eqeltri 2213 . . . 4  |-  A  e.  NN
9 funsng 5177 . . . 4  |-  ( ( A  e.  NN  /\  X  e.  V )  ->  Fun  { <. A ,  X >. } )
108, 9mpan 421 . . 3  |-  ( X  e.  V  ->  Fun  {
<. A ,  X >. } )
11 funss 5150 . . 3  |-  ( ( { <. A ,  X >. }  \  { (/) } )  C_  { <. A ,  X >. }  ->  ( Fun  { <. A ,  X >. }  ->  Fun  ( {
<. A ,  X >. } 
\  { (/) } ) ) )
126, 10, 11mpsyl 65 . 2  |-  ( X  e.  V  ->  Fun  ( { <. A ,  X >. }  \  { (/) } ) )
13 opexg 4158 . . . 4  |-  ( ( A  e.  NN  /\  X  e.  V )  -> 
<. A ,  X >.  e. 
_V )
148, 13mpan 421 . . 3  |-  ( X  e.  V  ->  <. A ,  X >.  e.  _V )
15 snexg 4116 . . 3  |-  ( <. A ,  X >.  e. 
_V  ->  { <. A ,  X >. }  e.  _V )
1614, 15syl 14 . 2  |-  ( X  e.  V  ->  { <. A ,  X >. }  e.  _V )
17 dmsnopg 5018 . . . 4  |-  ( X  e.  V  ->  dom  {
<. A ,  X >. }  =  { A }
)
187sneqi 3544 . . . . 5  |-  { A }  =  { I }
191nnzi 9099 . . . . . 6  |-  I  e.  ZZ
20 fzsn 9877 . . . . . 6  |-  ( I  e.  ZZ  ->  (
I ... I )  =  { I } )
2119, 20ax-mp 5 . . . . 5  |-  ( I ... I )  =  { I }
2218, 21eqtr4i 2164 . . . 4  |-  { A }  =  ( I ... I )
2317, 22eqtrdi 2189 . . 3  |-  ( X  e.  V  ->  dom  {
<. A ,  X >. }  =  ( I ... I ) )
24 eqimss 3156 . . 3  |-  ( dom 
{ <. A ,  X >. }  =  ( I ... I )  ->  dom  { <. A ,  X >. }  C_  ( I ... I ) )
2523, 24syl 14 . 2  |-  ( X  e.  V  ->  dom  {
<. A ,  X >. } 
C_  ( I ... I ) )
26 isstructr 12013 . 2  |-  ( ( ( I  e.  NN  /\  I  e.  NN  /\  I  <_  I )  /\  ( Fun  ( { <. A ,  X >. }  \  { (/) } )  /\  {
<. A ,  X >. }  e.  _V  /\  dom  {
<. A ,  X >. } 
C_  ( I ... I ) ) )  ->  { <. A ,  X >. } Struct  <. I ,  I >. )
275, 12, 16, 25, 26syl13anc 1219 1  |-  ( X  e.  V  ->  { <. A ,  X >. } Struct  <. I ,  I >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 963    = wceq 1332    e. wcel 1481   _Vcvv 2689    \ cdif 3073    C_ wss 3076   (/)c0 3368   {csn 3532   <.cop 3535   class class class wbr 3937   dom cdm 4547   Fun wfun 5125  (class class class)co 5782    <_ cle 7825   NNcn 8744   ZZcz 9078   ...cfz 9821   Struct cstr 11994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-z 9079  df-uz 9351  df-fz 9822  df-struct 12000
This theorem is referenced by:  strle2g  12089  strle3g  12090  1strstrg  12096  srngstrd  12120  lmodstrd  12131
  Copyright terms: Public domain W3C validator