| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sneqd | Unicode version | ||
| Description: Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.) |
| Ref | Expression |
|---|---|
| sneqd.1 |
|
| Ref | Expression |
|---|---|
| sneqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqd.1 |
. 2
| |
| 2 | sneq 3644 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-sn 3639 |
| This theorem is referenced by: dmsnsnsng 5160 cnvsng 5168 ressn 5223 f1osng 5563 fsng 5753 funopsn 5762 fnressn 5770 fvsng 5780 2nd1st 6266 dfmpo 6309 cnvf1olem 6310 tpostpos 6350 tfrlemi1 6418 tfr1onlemaccex 6434 tfrcllemaccex 6447 elixpsn 6822 ixpsnf1o 6823 en1bg 6892 mapsnen 6903 xpassen 6925 fztp 10200 fzsuc2 10201 fseq1p1m1 10216 fseq1m1p1 10217 zfz1isolemsplit 10983 zfz1isolem1 10985 s1val 11071 s1eq 11073 s1prc 11077 fsumm1 11727 fprodm1 11909 divalgmod 12238 ennnfonelemg 12774 ennnfonelemp1 12777 ennnfonelem1 12778 ennnfonelemnn0 12793 setsvalg 12862 strsetsid 12865 imasex 13137 imasival 13138 imasaddvallemg 13147 mulgval 13458 isunitd 13868 lspsnneg 14182 lspsnsub 14183 lmodindp1 14190 lidl0 14251 rsp0 14255 ridl0 14272 zrhrhmb 14384 znval 14398 psrval 14428 txdis 14749 |
| Copyright terms: Public domain | W3C validator |