![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sneqd | Unicode version |
Description: Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.) |
Ref | Expression |
---|---|
sneqd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sneqd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sneq 3485 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-11 1452 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-sn 3480 |
This theorem is referenced by: dmsnsnsng 4952 cnvsng 4960 ressn 5015 f1osng 5342 fsng 5525 fnressn 5538 fvsng 5548 2nd1st 6008 dfmpo 6050 cnvf1olem 6051 tpostpos 6091 tfrlemi1 6159 tfr1onlemaccex 6175 tfrcllemaccex 6188 elixpsn 6559 ixpsnf1o 6560 en1bg 6624 mapsnen 6635 xpassen 6653 fztp 9699 fzsuc2 9700 fseq1p1m1 9715 fseq1m1p1 9716 zfz1isolemsplit 10422 zfz1isolem1 10424 fsumm1 11024 divalgmod 11419 ennnfonelemg 11708 ennnfonelemp1 11711 ennnfonelem1 11712 ennnfonelemnn0 11727 setsvalg 11771 strsetsid 11774 txdis 12227 |
Copyright terms: Public domain | W3C validator |