| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sneqd | Unicode version | ||
| Description: Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.) |
| Ref | Expression |
|---|---|
| sneqd.1 |
|
| Ref | Expression |
|---|---|
| sneqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqd.1 |
. 2
| |
| 2 | sneq 3657 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-sn 3652 |
| This theorem is referenced by: dmsnsnsng 5182 cnvsng 5190 ressn 5245 f1osng 5590 fsng 5781 funopsn 5790 fnressn 5798 fvsng 5808 2nd1st 6296 dfmpo 6339 cnvf1olem 6340 tpostpos 6380 tfrlemi1 6448 tfr1onlemaccex 6464 tfrcllemaccex 6477 elixpsn 6852 ixpsnf1o 6853 en1bg 6922 mapsnen 6934 xpassen 6957 fztp 10242 fzsuc2 10243 fseq1p1m1 10258 fseq1m1p1 10259 zfz1isolemsplit 11027 zfz1isolem1 11029 s1val 11116 s1eq 11118 s1prc 11122 fsumm1 11893 fprodm1 12075 divalgmod 12404 ennnfonelemg 12940 ennnfonelemp1 12943 ennnfonelem1 12944 ennnfonelemnn0 12959 setsvalg 13028 strsetsid 13031 imasex 13304 imasival 13305 imasaddvallemg 13314 mulgval 13625 isunitd 14035 lspsnneg 14349 lspsnsub 14350 lmodindp1 14357 lidl0 14418 rsp0 14422 ridl0 14439 zrhrhmb 14551 znval 14565 psrval 14595 txdis 14916 |
| Copyright terms: Public domain | W3C validator |