| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sneqd | Unicode version | ||
| Description: Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.) |
| Ref | Expression |
|---|---|
| sneqd.1 |
|
| Ref | Expression |
|---|---|
| sneqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqd.1 |
. 2
| |
| 2 | sneq 3677 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-sn 3672 |
| This theorem is referenced by: dmsnsnsng 5206 cnvsng 5214 ressn 5269 f1osng 5616 fsng 5810 funopsn 5819 fnressn 5829 fvsng 5839 2nd1st 6332 dfmpo 6375 cnvf1olem 6376 tpostpos 6416 tfrlemi1 6484 tfr1onlemaccex 6500 tfrcllemaccex 6513 elixpsn 6890 ixpsnf1o 6891 en1bg 6960 mapsnen 6972 xpassen 6997 fztp 10282 fzsuc2 10283 fseq1p1m1 10298 fseq1m1p1 10299 zfz1isolemsplit 11068 zfz1isolem1 11070 s1val 11158 s1eq 11160 s1prc 11164 fsumm1 11935 fprodm1 12117 divalgmod 12446 ennnfonelemg 12982 ennnfonelemp1 12985 ennnfonelem1 12986 ennnfonelemnn0 13001 setsvalg 13070 strsetsid 13073 imasex 13346 imasival 13347 imasaddvallemg 13356 mulgval 13667 isunitd 14078 lspsnneg 14392 lspsnsub 14393 lmodindp1 14400 lidl0 14461 rsp0 14465 ridl0 14482 zrhrhmb 14594 znval 14608 psrval 14638 txdis 14959 wkslem1 16041 wkslem2 16042 iswlk 16044 |
| Copyright terms: Public domain | W3C validator |