| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sneqd | Unicode version | ||
| Description: Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.) |
| Ref | Expression |
|---|---|
| sneqd.1 |
|
| Ref | Expression |
|---|---|
| sneqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqd.1 |
. 2
| |
| 2 | sneq 3644 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-sn 3639 |
| This theorem is referenced by: dmsnsnsng 5161 cnvsng 5169 ressn 5224 f1osng 5565 fsng 5755 funopsn 5764 fnressn 5772 fvsng 5782 2nd1st 6268 dfmpo 6311 cnvf1olem 6312 tpostpos 6352 tfrlemi1 6420 tfr1onlemaccex 6436 tfrcllemaccex 6449 elixpsn 6824 ixpsnf1o 6825 en1bg 6894 mapsnen 6905 xpassen 6927 fztp 10202 fzsuc2 10203 fseq1p1m1 10218 fseq1m1p1 10219 zfz1isolemsplit 10985 zfz1isolem1 10987 s1val 11074 s1eq 11076 s1prc 11080 fsumm1 11760 fprodm1 11942 divalgmod 12271 ennnfonelemg 12807 ennnfonelemp1 12810 ennnfonelem1 12811 ennnfonelemnn0 12826 setsvalg 12895 strsetsid 12898 imasex 13170 imasival 13171 imasaddvallemg 13180 mulgval 13491 isunitd 13901 lspsnneg 14215 lspsnsub 14216 lmodindp1 14223 lidl0 14284 rsp0 14288 ridl0 14305 zrhrhmb 14417 znval 14431 psrval 14461 txdis 14782 |
| Copyright terms: Public domain | W3C validator |