| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sneqi | GIF version | ||
| Description: Equality inference for singletons. (Contributed by NM, 22-Jan-2004.) | 
| Ref | Expression | 
|---|---|
| sneqi.1 | ⊢ 𝐴 = 𝐵 | 
| Ref | Expression | 
|---|---|
| sneqi | ⊢ {𝐴} = {𝐵} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sneq 3633 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} = {𝐵} | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 {csn 3622 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-sn 3628 | 
| This theorem is referenced by: fnressn 5748 fressnfv 5749 snriota 5907 xpassen 6889 ennnfonelem1 12624 strle1g 12784 imasplusg 12951 ghmeqker 13401 | 
| Copyright terms: Public domain | W3C validator |