| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnressn | Unicode version | ||
| Description: A function restricted to a singleton. (Contributed by NM, 9-Oct-2004.) |
| Ref | Expression |
|---|---|
| fnressn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3677 |
. . . . . 6
| |
| 2 | 1 | reseq2d 5005 |
. . . . 5
|
| 3 | fveq2 5627 |
. . . . . . 7
| |
| 4 | opeq12 3859 |
. . . . . . 7
| |
| 5 | 3, 4 | mpdan 421 |
. . . . . 6
|
| 6 | 5 | sneqd 3679 |
. . . . 5
|
| 7 | 2, 6 | eqeq12d 2244 |
. . . 4
|
| 8 | 7 | imbi2d 230 |
. . 3
|
| 9 | vex 2802 |
. . . . . . 7
| |
| 10 | 9 | snss 3803 |
. . . . . 6
|
| 11 | fnssres 5436 |
. . . . . 6
| |
| 12 | 10, 11 | sylan2b 287 |
. . . . 5
|
| 13 | dffn2 5475 |
. . . . . . 7
| |
| 14 | 9 | fsn2 5809 |
. . . . . . 7
|
| 15 | 13, 14 | bitri 184 |
. . . . . 6
|
| 16 | snssi 3812 |
. . . . . . . . . 10
| |
| 17 | 16, 11 | sylan2 286 |
. . . . . . . . 9
|
| 18 | vsnid 3698 |
. . . . . . . . 9
| |
| 19 | funfvex 5644 |
. . . . . . . . . 10
| |
| 20 | 19 | funfni 5423 |
. . . . . . . . 9
|
| 21 | 17, 18, 20 | sylancl 413 |
. . . . . . . 8
|
| 22 | 21 | biantrurd 305 |
. . . . . . 7
|
| 23 | fvres 5651 |
. . . . . . . . . . 11
| |
| 24 | 18, 23 | ax-mp 5 |
. . . . . . . . . 10
|
| 25 | 24 | opeq2i 3861 |
. . . . . . . . 9
|
| 26 | 25 | sneqi 3678 |
. . . . . . . 8
|
| 27 | 26 | eqeq2i 2240 |
. . . . . . 7
|
| 28 | 22, 27 | bitr3di 195 |
. . . . . 6
|
| 29 | 15, 28 | bitrid 192 |
. . . . 5
|
| 30 | 12, 29 | mpbid 147 |
. . . 4
|
| 31 | 30 | expcom 116 |
. . 3
|
| 32 | 8, 31 | vtoclga 2867 |
. 2
|
| 33 | 32 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 |
| This theorem is referenced by: fressnfv 5826 fnsnsplitss 5838 fnsnsplitdc 6651 dif1en 7041 fnfi 7103 fseq1p1m1 10290 resunimafz0 11053 |
| Copyright terms: Public domain | W3C validator |