ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnressn Unicode version

Theorem fnressn 5825
Description: A function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
fnressn  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F  |`  { B } )  =  { <. B ,  ( F `
 B ) >. } )

Proof of Theorem fnressn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sneq 3677 . . . . . 6  |-  ( x  =  B  ->  { x }  =  { B } )
21reseq2d 5005 . . . . 5  |-  ( x  =  B  ->  ( F  |`  { x }
)  =  ( F  |`  { B } ) )
3 fveq2 5627 . . . . . . 7  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
4 opeq12 3859 . . . . . . 7  |-  ( ( x  =  B  /\  ( F `  x )  =  ( F `  B ) )  ->  <. x ,  ( F `
 x ) >.  =  <. B ,  ( F `  B )
>. )
53, 4mpdan 421 . . . . . 6  |-  ( x  =  B  ->  <. x ,  ( F `  x ) >.  =  <. B ,  ( F `  B ) >. )
65sneqd 3679 . . . . 5  |-  ( x  =  B  ->  { <. x ,  ( F `  x ) >. }  =  { <. B ,  ( F `  B )
>. } )
72, 6eqeq12d 2244 . . . 4  |-  ( x  =  B  ->  (
( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } 
<->  ( F  |`  { B } )  =  { <. B ,  ( F `
 B ) >. } ) )
87imbi2d 230 . . 3  |-  ( x  =  B  ->  (
( F  Fn  A  ->  ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } )  <->  ( F  Fn  A  ->  ( F  |`  { B } )  =  { <. B , 
( F `  B
) >. } ) ) )
9 vex 2802 . . . . . . 7  |-  x  e. 
_V
109snss 3803 . . . . . 6  |-  ( x  e.  A  <->  { x }  C_  A )
11 fnssres 5436 . . . . . 6  |-  ( ( F  Fn  A  /\  { x }  C_  A
)  ->  ( F  |` 
{ x } )  Fn  { x }
)
1210, 11sylan2b 287 . . . . 5  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F  |`  { x } )  Fn  {
x } )
13 dffn2 5475 . . . . . . 7  |-  ( ( F  |`  { x } )  Fn  {
x }  <->  ( F  |` 
{ x } ) : { x } --> _V )
149fsn2 5809 . . . . . . 7  |-  ( ( F  |`  { x } ) : {
x } --> _V  <->  ( (
( F  |`  { x } ) `  x
)  e.  _V  /\  ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. } ) )
1513, 14bitri 184 . . . . . 6  |-  ( ( F  |`  { x } )  Fn  {
x }  <->  ( (
( F  |`  { x } ) `  x
)  e.  _V  /\  ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. } ) )
16 snssi 3812 . . . . . . . . . 10  |-  ( x  e.  A  ->  { x }  C_  A )
1716, 11sylan2 286 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F  |`  { x } )  Fn  {
x } )
18 vsnid 3698 . . . . . . . . 9  |-  x  e. 
{ x }
19 funfvex 5644 . . . . . . . . . 10  |-  ( ( Fun  ( F  |`  { x } )  /\  x  e.  dom  ( F  |`  { x } ) )  -> 
( ( F  |`  { x } ) `
 x )  e. 
_V )
2019funfni 5423 . . . . . . . . 9  |-  ( ( ( F  |`  { x } )  Fn  {
x }  /\  x  e.  { x } )  ->  ( ( F  |`  { x } ) `
 x )  e. 
_V )
2117, 18, 20sylancl 413 . . . . . . . 8  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F  |`  { x } ) `
 x )  e. 
_V )
2221biantrurd 305 . . . . . . 7  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `
 x ) >. } 
<->  ( ( ( F  |`  { x } ) `
 x )  e. 
_V  /\  ( F  |` 
{ x } )  =  { <. x ,  ( ( F  |`  { x } ) `
 x ) >. } ) ) )
23 fvres 5651 . . . . . . . . . . 11  |-  ( x  e.  { x }  ->  ( ( F  |`  { x } ) `
 x )  =  ( F `  x
) )
2418, 23ax-mp 5 . . . . . . . . . 10  |-  ( ( F  |`  { x } ) `  x
)  =  ( F `
 x )
2524opeq2i 3861 . . . . . . . . 9  |-  <. x ,  ( ( F  |`  { x } ) `
 x ) >.  =  <. x ,  ( F `  x )
>.
2625sneqi 3678 . . . . . . . 8  |-  { <. x ,  ( ( F  |`  { x } ) `
 x ) >. }  =  { <. x ,  ( F `  x ) >. }
2726eqeq2i 2240 . . . . . . 7  |-  ( ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. }  <->  ( F  |` 
{ x } )  =  { <. x ,  ( F `  x ) >. } )
2822, 27bitr3di 195 . . . . . 6  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( ( ( F  |`  { x } ) `  x
)  e.  _V  /\  ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. } )  <->  ( F  |` 
{ x } )  =  { <. x ,  ( F `  x ) >. } ) )
2915, 28bitrid 192 . . . . 5  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F  |`  { x } )  Fn  { x }  <->  ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } ) )
3012, 29mpbid 147 . . . 4  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } )
3130expcom 116 . . 3  |-  ( x  e.  A  ->  ( F  Fn  A  ->  ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } ) )
328, 31vtoclga 2867 . 2  |-  ( B  e.  A  ->  ( F  Fn  A  ->  ( F  |`  { B } )  =  { <. B ,  ( F `
 B ) >. } ) )
3332impcom 125 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F  |`  { B } )  =  { <. B ,  ( F `
 B ) >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   {csn 3666   <.cop 3669    |` cres 4721    Fn wfn 5313   -->wf 5314   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326
This theorem is referenced by:  fressnfv  5826  fnsnsplitss  5838  fnsnsplitdc  6651  dif1en  7041  fnfi  7103  fseq1p1m1  10290  resunimafz0  11053
  Copyright terms: Public domain W3C validator