| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fnressn | Unicode version | ||
| Description: A function restricted to a singleton. (Contributed by NM, 9-Oct-2004.) | 
| Ref | Expression | 
|---|---|
| fnressn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sneq 3633 | 
. . . . . 6
 | |
| 2 | 1 | reseq2d 4946 | 
. . . . 5
 | 
| 3 | fveq2 5558 | 
. . . . . . 7
 | |
| 4 | opeq12 3810 | 
. . . . . . 7
 | |
| 5 | 3, 4 | mpdan 421 | 
. . . . . 6
 | 
| 6 | 5 | sneqd 3635 | 
. . . . 5
 | 
| 7 | 2, 6 | eqeq12d 2211 | 
. . . 4
 | 
| 8 | 7 | imbi2d 230 | 
. . 3
 | 
| 9 | vex 2766 | 
. . . . . . 7
 | |
| 10 | 9 | snss 3757 | 
. . . . . 6
 | 
| 11 | fnssres 5371 | 
. . . . . 6
 | |
| 12 | 10, 11 | sylan2b 287 | 
. . . . 5
 | 
| 13 | dffn2 5409 | 
. . . . . . 7
 | |
| 14 | 9 | fsn2 5736 | 
. . . . . . 7
 | 
| 15 | 13, 14 | bitri 184 | 
. . . . . 6
 | 
| 16 | snssi 3766 | 
. . . . . . . . . 10
 | |
| 17 | 16, 11 | sylan2 286 | 
. . . . . . . . 9
 | 
| 18 | vsnid 3654 | 
. . . . . . . . 9
 | |
| 19 | funfvex 5575 | 
. . . . . . . . . 10
 | |
| 20 | 19 | funfni 5358 | 
. . . . . . . . 9
 | 
| 21 | 17, 18, 20 | sylancl 413 | 
. . . . . . . 8
 | 
| 22 | 21 | biantrurd 305 | 
. . . . . . 7
 | 
| 23 | fvres 5582 | 
. . . . . . . . . . 11
 | |
| 24 | 18, 23 | ax-mp 5 | 
. . . . . . . . . 10
 | 
| 25 | 24 | opeq2i 3812 | 
. . . . . . . . 9
 | 
| 26 | 25 | sneqi 3634 | 
. . . . . . . 8
 | 
| 27 | 26 | eqeq2i 2207 | 
. . . . . . 7
 | 
| 28 | 22, 27 | bitr3di 195 | 
. . . . . 6
 | 
| 29 | 15, 28 | bitrid 192 | 
. . . . 5
 | 
| 30 | 12, 29 | mpbid 147 | 
. . . 4
 | 
| 31 | 30 | expcom 116 | 
. . 3
 | 
| 32 | 8, 31 | vtoclga 2830 | 
. 2
 | 
| 33 | 32 | impcom 125 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 | 
| This theorem is referenced by: fressnfv 5749 fnsnsplitss 5761 fnsnsplitdc 6563 dif1en 6940 fnfi 7002 fseq1p1m1 10169 resunimafz0 10923 | 
| Copyright terms: Public domain | W3C validator |