ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnressn Unicode version

Theorem fnressn 5652
Description: A function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
fnressn  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F  |`  { B } )  =  { <. B ,  ( F `
 B ) >. } )

Proof of Theorem fnressn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sneq 3571 . . . . . 6  |-  ( x  =  B  ->  { x }  =  { B } )
21reseq2d 4865 . . . . 5  |-  ( x  =  B  ->  ( F  |`  { x }
)  =  ( F  |`  { B } ) )
3 fveq2 5467 . . . . . . 7  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
4 opeq12 3743 . . . . . . 7  |-  ( ( x  =  B  /\  ( F `  x )  =  ( F `  B ) )  ->  <. x ,  ( F `
 x ) >.  =  <. B ,  ( F `  B )
>. )
53, 4mpdan 418 . . . . . 6  |-  ( x  =  B  ->  <. x ,  ( F `  x ) >.  =  <. B ,  ( F `  B ) >. )
65sneqd 3573 . . . . 5  |-  ( x  =  B  ->  { <. x ,  ( F `  x ) >. }  =  { <. B ,  ( F `  B )
>. } )
72, 6eqeq12d 2172 . . . 4  |-  ( x  =  B  ->  (
( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } 
<->  ( F  |`  { B } )  =  { <. B ,  ( F `
 B ) >. } ) )
87imbi2d 229 . . 3  |-  ( x  =  B  ->  (
( F  Fn  A  ->  ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } )  <->  ( F  Fn  A  ->  ( F  |`  { B } )  =  { <. B , 
( F `  B
) >. } ) ) )
9 vex 2715 . . . . . . 7  |-  x  e. 
_V
109snss 3685 . . . . . 6  |-  ( x  e.  A  <->  { x }  C_  A )
11 fnssres 5282 . . . . . 6  |-  ( ( F  Fn  A  /\  { x }  C_  A
)  ->  ( F  |` 
{ x } )  Fn  { x }
)
1210, 11sylan2b 285 . . . . 5  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F  |`  { x } )  Fn  {
x } )
13 dffn2 5320 . . . . . . 7  |-  ( ( F  |`  { x } )  Fn  {
x }  <->  ( F  |` 
{ x } ) : { x } --> _V )
149fsn2 5640 . . . . . . 7  |-  ( ( F  |`  { x } ) : {
x } --> _V  <->  ( (
( F  |`  { x } ) `  x
)  e.  _V  /\  ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. } ) )
1513, 14bitri 183 . . . . . 6  |-  ( ( F  |`  { x } )  Fn  {
x }  <->  ( (
( F  |`  { x } ) `  x
)  e.  _V  /\  ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. } ) )
16 snssi 3700 . . . . . . . . . 10  |-  ( x  e.  A  ->  { x }  C_  A )
1716, 11sylan2 284 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F  |`  { x } )  Fn  {
x } )
18 vsnid 3592 . . . . . . . . 9  |-  x  e. 
{ x }
19 funfvex 5484 . . . . . . . . . 10  |-  ( ( Fun  ( F  |`  { x } )  /\  x  e.  dom  ( F  |`  { x } ) )  -> 
( ( F  |`  { x } ) `
 x )  e. 
_V )
2019funfni 5269 . . . . . . . . 9  |-  ( ( ( F  |`  { x } )  Fn  {
x }  /\  x  e.  { x } )  ->  ( ( F  |`  { x } ) `
 x )  e. 
_V )
2117, 18, 20sylancl 410 . . . . . . . 8  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F  |`  { x } ) `
 x )  e. 
_V )
2221biantrurd 303 . . . . . . 7  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `
 x ) >. } 
<->  ( ( ( F  |`  { x } ) `
 x )  e. 
_V  /\  ( F  |` 
{ x } )  =  { <. x ,  ( ( F  |`  { x } ) `
 x ) >. } ) ) )
23 fvres 5491 . . . . . . . . . . 11  |-  ( x  e.  { x }  ->  ( ( F  |`  { x } ) `
 x )  =  ( F `  x
) )
2418, 23ax-mp 5 . . . . . . . . . 10  |-  ( ( F  |`  { x } ) `  x
)  =  ( F `
 x )
2524opeq2i 3745 . . . . . . . . 9  |-  <. x ,  ( ( F  |`  { x } ) `
 x ) >.  =  <. x ,  ( F `  x )
>.
2625sneqi 3572 . . . . . . . 8  |-  { <. x ,  ( ( F  |`  { x } ) `
 x ) >. }  =  { <. x ,  ( F `  x ) >. }
2726eqeq2i 2168 . . . . . . 7  |-  ( ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. }  <->  ( F  |` 
{ x } )  =  { <. x ,  ( F `  x ) >. } )
2822, 27bitr3di 194 . . . . . 6  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( ( ( F  |`  { x } ) `  x
)  e.  _V  /\  ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. } )  <->  ( F  |` 
{ x } )  =  { <. x ,  ( F `  x ) >. } ) )
2915, 28syl5bb 191 . . . . 5  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F  |`  { x } )  Fn  { x }  <->  ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } ) )
3012, 29mpbid 146 . . . 4  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } )
3130expcom 115 . . 3  |-  ( x  e.  A  ->  ( F  Fn  A  ->  ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } ) )
328, 31vtoclga 2778 . 2  |-  ( B  e.  A  ->  ( F  Fn  A  ->  ( F  |`  { B } )  =  { <. B ,  ( F `
 B ) >. } ) )
3332impcom 124 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F  |`  { B } )  =  { <. B ,  ( F `
 B ) >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   _Vcvv 2712    C_ wss 3102   {csn 3560   <.cop 3563    |` cres 4587    Fn wfn 5164   -->wf 5165   ` cfv 5169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-reu 2442  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177
This theorem is referenced by:  fressnfv  5653  fnsnsplitss  5665  fnsnsplitdc  6449  dif1en  6821  fnfi  6878  fseq1p1m1  9989  resunimafz0  10695
  Copyright terms: Public domain W3C validator