Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnressn | Unicode version |
Description: A function restricted to a singleton. (Contributed by NM, 9-Oct-2004.) |
Ref | Expression |
---|---|
fnressn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3587 | . . . . . 6 | |
2 | 1 | reseq2d 4884 | . . . . 5 |
3 | fveq2 5486 | . . . . . . 7 | |
4 | opeq12 3760 | . . . . . . 7 | |
5 | 3, 4 | mpdan 418 | . . . . . 6 |
6 | 5 | sneqd 3589 | . . . . 5 |
7 | 2, 6 | eqeq12d 2180 | . . . 4 |
8 | 7 | imbi2d 229 | . . 3 |
9 | vex 2729 | . . . . . . 7 | |
10 | 9 | snss 3702 | . . . . . 6 |
11 | fnssres 5301 | . . . . . 6 | |
12 | 10, 11 | sylan2b 285 | . . . . 5 |
13 | dffn2 5339 | . . . . . . 7 | |
14 | 9 | fsn2 5659 | . . . . . . 7 |
15 | 13, 14 | bitri 183 | . . . . . 6 |
16 | snssi 3717 | . . . . . . . . . 10 | |
17 | 16, 11 | sylan2 284 | . . . . . . . . 9 |
18 | vsnid 3608 | . . . . . . . . 9 | |
19 | funfvex 5503 | . . . . . . . . . 10 | |
20 | 19 | funfni 5288 | . . . . . . . . 9 |
21 | 17, 18, 20 | sylancl 410 | . . . . . . . 8 |
22 | 21 | biantrurd 303 | . . . . . . 7 |
23 | fvres 5510 | . . . . . . . . . . 11 | |
24 | 18, 23 | ax-mp 5 | . . . . . . . . . 10 |
25 | 24 | opeq2i 3762 | . . . . . . . . 9 |
26 | 25 | sneqi 3588 | . . . . . . . 8 |
27 | 26 | eqeq2i 2176 | . . . . . . 7 |
28 | 22, 27 | bitr3di 194 | . . . . . 6 |
29 | 15, 28 | syl5bb 191 | . . . . 5 |
30 | 12, 29 | mpbid 146 | . . . 4 |
31 | 30 | expcom 115 | . . 3 |
32 | 8, 31 | vtoclga 2792 | . 2 |
33 | 32 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cvv 2726 wss 3116 csn 3576 cop 3579 cres 4606 wfn 5183 wf 5184 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: fressnfv 5672 fnsnsplitss 5684 fnsnsplitdc 6473 dif1en 6845 fnfi 6902 fseq1p1m1 10029 resunimafz0 10744 |
Copyright terms: Public domain | W3C validator |