Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnressn | Unicode version |
Description: A function restricted to a singleton. (Contributed by NM, 9-Oct-2004.) |
Ref | Expression |
---|---|
fnressn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3571 | . . . . . 6 | |
2 | 1 | reseq2d 4865 | . . . . 5 |
3 | fveq2 5467 | . . . . . . 7 | |
4 | opeq12 3743 | . . . . . . 7 | |
5 | 3, 4 | mpdan 418 | . . . . . 6 |
6 | 5 | sneqd 3573 | . . . . 5 |
7 | 2, 6 | eqeq12d 2172 | . . . 4 |
8 | 7 | imbi2d 229 | . . 3 |
9 | vex 2715 | . . . . . . 7 | |
10 | 9 | snss 3685 | . . . . . 6 |
11 | fnssres 5282 | . . . . . 6 | |
12 | 10, 11 | sylan2b 285 | . . . . 5 |
13 | dffn2 5320 | . . . . . . 7 | |
14 | 9 | fsn2 5640 | . . . . . . 7 |
15 | 13, 14 | bitri 183 | . . . . . 6 |
16 | snssi 3700 | . . . . . . . . . 10 | |
17 | 16, 11 | sylan2 284 | . . . . . . . . 9 |
18 | vsnid 3592 | . . . . . . . . 9 | |
19 | funfvex 5484 | . . . . . . . . . 10 | |
20 | 19 | funfni 5269 | . . . . . . . . 9 |
21 | 17, 18, 20 | sylancl 410 | . . . . . . . 8 |
22 | 21 | biantrurd 303 | . . . . . . 7 |
23 | fvres 5491 | . . . . . . . . . . 11 | |
24 | 18, 23 | ax-mp 5 | . . . . . . . . . 10 |
25 | 24 | opeq2i 3745 | . . . . . . . . 9 |
26 | 25 | sneqi 3572 | . . . . . . . 8 |
27 | 26 | eqeq2i 2168 | . . . . . . 7 |
28 | 22, 27 | bitr3di 194 | . . . . . 6 |
29 | 15, 28 | syl5bb 191 | . . . . 5 |
30 | 12, 29 | mpbid 146 | . . . 4 |
31 | 30 | expcom 115 | . . 3 |
32 | 8, 31 | vtoclga 2778 | . 2 |
33 | 32 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 cvv 2712 wss 3102 csn 3560 cop 3563 cres 4587 wfn 5164 wf 5165 cfv 5169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-reu 2442 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 |
This theorem is referenced by: fressnfv 5653 fnsnsplitss 5665 fnsnsplitdc 6449 dif1en 6821 fnfi 6878 fseq1p1m1 9989 resunimafz0 10695 |
Copyright terms: Public domain | W3C validator |