Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnressn | Unicode version |
Description: A function restricted to a singleton. (Contributed by NM, 9-Oct-2004.) |
Ref | Expression |
---|---|
fnressn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3594 | . . . . . 6 | |
2 | 1 | reseq2d 4891 | . . . . 5 |
3 | fveq2 5496 | . . . . . . 7 | |
4 | opeq12 3767 | . . . . . . 7 | |
5 | 3, 4 | mpdan 419 | . . . . . 6 |
6 | 5 | sneqd 3596 | . . . . 5 |
7 | 2, 6 | eqeq12d 2185 | . . . 4 |
8 | 7 | imbi2d 229 | . . 3 |
9 | vex 2733 | . . . . . . 7 | |
10 | 9 | snss 3709 | . . . . . 6 |
11 | fnssres 5311 | . . . . . 6 | |
12 | 10, 11 | sylan2b 285 | . . . . 5 |
13 | dffn2 5349 | . . . . . . 7 | |
14 | 9 | fsn2 5670 | . . . . . . 7 |
15 | 13, 14 | bitri 183 | . . . . . 6 |
16 | snssi 3724 | . . . . . . . . . 10 | |
17 | 16, 11 | sylan2 284 | . . . . . . . . 9 |
18 | vsnid 3615 | . . . . . . . . 9 | |
19 | funfvex 5513 | . . . . . . . . . 10 | |
20 | 19 | funfni 5298 | . . . . . . . . 9 |
21 | 17, 18, 20 | sylancl 411 | . . . . . . . 8 |
22 | 21 | biantrurd 303 | . . . . . . 7 |
23 | fvres 5520 | . . . . . . . . . . 11 | |
24 | 18, 23 | ax-mp 5 | . . . . . . . . . 10 |
25 | 24 | opeq2i 3769 | . . . . . . . . 9 |
26 | 25 | sneqi 3595 | . . . . . . . 8 |
27 | 26 | eqeq2i 2181 | . . . . . . 7 |
28 | 22, 27 | bitr3di 194 | . . . . . 6 |
29 | 15, 28 | syl5bb 191 | . . . . 5 |
30 | 12, 29 | mpbid 146 | . . . 4 |
31 | 30 | expcom 115 | . . 3 |
32 | 8, 31 | vtoclga 2796 | . 2 |
33 | 32 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cvv 2730 wss 3121 csn 3583 cop 3586 cres 4613 wfn 5193 wf 5194 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 |
This theorem is referenced by: fressnfv 5683 fnsnsplitss 5695 fnsnsplitdc 6484 dif1en 6857 fnfi 6914 fseq1p1m1 10050 resunimafz0 10766 |
Copyright terms: Public domain | W3C validator |