ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnressn Unicode version

Theorem fnressn 5671
Description: A function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
fnressn  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F  |`  { B } )  =  { <. B ,  ( F `
 B ) >. } )

Proof of Theorem fnressn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sneq 3587 . . . . . 6  |-  ( x  =  B  ->  { x }  =  { B } )
21reseq2d 4884 . . . . 5  |-  ( x  =  B  ->  ( F  |`  { x }
)  =  ( F  |`  { B } ) )
3 fveq2 5486 . . . . . . 7  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
4 opeq12 3760 . . . . . . 7  |-  ( ( x  =  B  /\  ( F `  x )  =  ( F `  B ) )  ->  <. x ,  ( F `
 x ) >.  =  <. B ,  ( F `  B )
>. )
53, 4mpdan 418 . . . . . 6  |-  ( x  =  B  ->  <. x ,  ( F `  x ) >.  =  <. B ,  ( F `  B ) >. )
65sneqd 3589 . . . . 5  |-  ( x  =  B  ->  { <. x ,  ( F `  x ) >. }  =  { <. B ,  ( F `  B )
>. } )
72, 6eqeq12d 2180 . . . 4  |-  ( x  =  B  ->  (
( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } 
<->  ( F  |`  { B } )  =  { <. B ,  ( F `
 B ) >. } ) )
87imbi2d 229 . . 3  |-  ( x  =  B  ->  (
( F  Fn  A  ->  ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } )  <->  ( F  Fn  A  ->  ( F  |`  { B } )  =  { <. B , 
( F `  B
) >. } ) ) )
9 vex 2729 . . . . . . 7  |-  x  e. 
_V
109snss 3702 . . . . . 6  |-  ( x  e.  A  <->  { x }  C_  A )
11 fnssres 5301 . . . . . 6  |-  ( ( F  Fn  A  /\  { x }  C_  A
)  ->  ( F  |` 
{ x } )  Fn  { x }
)
1210, 11sylan2b 285 . . . . 5  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F  |`  { x } )  Fn  {
x } )
13 dffn2 5339 . . . . . . 7  |-  ( ( F  |`  { x } )  Fn  {
x }  <->  ( F  |` 
{ x } ) : { x } --> _V )
149fsn2 5659 . . . . . . 7  |-  ( ( F  |`  { x } ) : {
x } --> _V  <->  ( (
( F  |`  { x } ) `  x
)  e.  _V  /\  ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. } ) )
1513, 14bitri 183 . . . . . 6  |-  ( ( F  |`  { x } )  Fn  {
x }  <->  ( (
( F  |`  { x } ) `  x
)  e.  _V  /\  ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. } ) )
16 snssi 3717 . . . . . . . . . 10  |-  ( x  e.  A  ->  { x }  C_  A )
1716, 11sylan2 284 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F  |`  { x } )  Fn  {
x } )
18 vsnid 3608 . . . . . . . . 9  |-  x  e. 
{ x }
19 funfvex 5503 . . . . . . . . . 10  |-  ( ( Fun  ( F  |`  { x } )  /\  x  e.  dom  ( F  |`  { x } ) )  -> 
( ( F  |`  { x } ) `
 x )  e. 
_V )
2019funfni 5288 . . . . . . . . 9  |-  ( ( ( F  |`  { x } )  Fn  {
x }  /\  x  e.  { x } )  ->  ( ( F  |`  { x } ) `
 x )  e. 
_V )
2117, 18, 20sylancl 410 . . . . . . . 8  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F  |`  { x } ) `
 x )  e. 
_V )
2221biantrurd 303 . . . . . . 7  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `
 x ) >. } 
<->  ( ( ( F  |`  { x } ) `
 x )  e. 
_V  /\  ( F  |` 
{ x } )  =  { <. x ,  ( ( F  |`  { x } ) `
 x ) >. } ) ) )
23 fvres 5510 . . . . . . . . . . 11  |-  ( x  e.  { x }  ->  ( ( F  |`  { x } ) `
 x )  =  ( F `  x
) )
2418, 23ax-mp 5 . . . . . . . . . 10  |-  ( ( F  |`  { x } ) `  x
)  =  ( F `
 x )
2524opeq2i 3762 . . . . . . . . 9  |-  <. x ,  ( ( F  |`  { x } ) `
 x ) >.  =  <. x ,  ( F `  x )
>.
2625sneqi 3588 . . . . . . . 8  |-  { <. x ,  ( ( F  |`  { x } ) `
 x ) >. }  =  { <. x ,  ( F `  x ) >. }
2726eqeq2i 2176 . . . . . . 7  |-  ( ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. }  <->  ( F  |` 
{ x } )  =  { <. x ,  ( F `  x ) >. } )
2822, 27bitr3di 194 . . . . . 6  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( ( ( F  |`  { x } ) `  x
)  e.  _V  /\  ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. } )  <->  ( F  |` 
{ x } )  =  { <. x ,  ( F `  x ) >. } ) )
2915, 28syl5bb 191 . . . . 5  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F  |`  { x } )  Fn  { x }  <->  ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } ) )
3012, 29mpbid 146 . . . 4  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } )
3130expcom 115 . . 3  |-  ( x  e.  A  ->  ( F  Fn  A  ->  ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } ) )
328, 31vtoclga 2792 . 2  |-  ( B  e.  A  ->  ( F  Fn  A  ->  ( F  |`  { B } )  =  { <. B ,  ( F `
 B ) >. } ) )
3332impcom 124 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F  |`  { B } )  =  { <. B ,  ( F `
 B ) >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726    C_ wss 3116   {csn 3576   <.cop 3579    |` cres 4606    Fn wfn 5183   -->wf 5184   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196
This theorem is referenced by:  fressnfv  5672  fnsnsplitss  5684  fnsnsplitdc  6473  dif1en  6845  fnfi  6902  fseq1p1m1  10029  resunimafz0  10744
  Copyright terms: Public domain W3C validator