ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fressnfv Unicode version

Theorem fressnfv 5749
Description: The value of a function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
fressnfv  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F  |`  { B } ) : { B } --> C  <->  ( F `  B )  e.  C
) )

Proof of Theorem fressnfv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sneq 3633 . . . . . 6  |-  ( x  =  B  ->  { x }  =  { B } )
2 reseq2 4941 . . . . . . . 8  |-  ( { x }  =  { B }  ->  ( F  |`  { x } )  =  ( F  |`  { B } ) )
32feq1d 5394 . . . . . . 7  |-  ( { x }  =  { B }  ->  ( ( F  |`  { x } ) : {
x } --> C  <->  ( F  |` 
{ B } ) : { x } --> C ) )
4 feq2 5391 . . . . . . 7  |-  ( { x }  =  { B }  ->  ( ( F  |`  { B } ) : {
x } --> C  <->  ( F  |` 
{ B } ) : { B } --> C ) )
53, 4bitrd 188 . . . . . 6  |-  ( { x }  =  { B }  ->  ( ( F  |`  { x } ) : {
x } --> C  <->  ( F  |` 
{ B } ) : { B } --> C ) )
61, 5syl 14 . . . . 5  |-  ( x  =  B  ->  (
( F  |`  { x } ) : {
x } --> C  <->  ( F  |` 
{ B } ) : { B } --> C ) )
7 fveq2 5558 . . . . . 6  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
87eleq1d 2265 . . . . 5  |-  ( x  =  B  ->  (
( F `  x
)  e.  C  <->  ( F `  B )  e.  C
) )
96, 8bibi12d 235 . . . 4  |-  ( x  =  B  ->  (
( ( F  |`  { x } ) : { x } --> C 
<->  ( F `  x
)  e.  C )  <-> 
( ( F  |`  { B } ) : { B } --> C  <->  ( F `  B )  e.  C
) ) )
109imbi2d 230 . . 3  |-  ( x  =  B  ->  (
( F  Fn  A  ->  ( ( F  |`  { x } ) : { x } --> C 
<->  ( F `  x
)  e.  C ) )  <->  ( F  Fn  A  ->  ( ( F  |`  { B } ) : { B } --> C 
<->  ( F `  B
)  e.  C ) ) ) )
11 fnressn 5748 . . . . 5  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } )
12 vsnid 3654 . . . . . . . . . 10  |-  x  e. 
{ x }
13 fvres 5582 . . . . . . . . . 10  |-  ( x  e.  { x }  ->  ( ( F  |`  { x } ) `
 x )  =  ( F `  x
) )
1412, 13ax-mp 5 . . . . . . . . 9  |-  ( ( F  |`  { x } ) `  x
)  =  ( F `
 x )
1514opeq2i 3812 . . . . . . . 8  |-  <. x ,  ( ( F  |`  { x } ) `
 x ) >.  =  <. x ,  ( F `  x )
>.
1615sneqi 3634 . . . . . . 7  |-  { <. x ,  ( ( F  |`  { x } ) `
 x ) >. }  =  { <. x ,  ( F `  x ) >. }
1716eqeq2i 2207 . . . . . 6  |-  ( ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. }  <->  ( F  |` 
{ x } )  =  { <. x ,  ( F `  x ) >. } )
18 vex 2766 . . . . . . . 8  |-  x  e. 
_V
1918fsn2 5736 . . . . . . 7  |-  ( ( F  |`  { x } ) : {
x } --> C  <->  ( (
( F  |`  { x } ) `  x
)  e.  C  /\  ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. } ) )
20 iba 300 . . . . . . . 8  |-  ( ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. }  ->  (
( ( F  |`  { x } ) `
 x )  e.  C  <->  ( ( ( F  |`  { x } ) `  x
)  e.  C  /\  ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. } ) ) )
2114eleq1i 2262 . . . . . . . 8  |-  ( ( ( F  |`  { x } ) `  x
)  e.  C  <->  ( F `  x )  e.  C
)
2220, 21bitr3di 195 . . . . . . 7  |-  ( ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. }  ->  (
( ( ( F  |`  { x } ) `
 x )  e.  C  /\  ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `
 x ) >. } )  <->  ( F `  x )  e.  C
) )
2319, 22bitrid 192 . . . . . 6  |-  ( ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. }  ->  (
( F  |`  { x } ) : {
x } --> C  <->  ( F `  x )  e.  C
) )
2417, 23sylbir 135 . . . . 5  |-  ( ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. }  ->  ( ( F  |`  { x } ) : { x } --> C 
<->  ( F `  x
)  e.  C ) )
2511, 24syl 14 . . . 4  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F  |`  { x } ) : { x } --> C 
<->  ( F `  x
)  e.  C ) )
2625expcom 116 . . 3  |-  ( x  e.  A  ->  ( F  Fn  A  ->  ( ( F  |`  { x } ) : {
x } --> C  <->  ( F `  x )  e.  C
) ) )
2710, 26vtoclga 2830 . 2  |-  ( B  e.  A  ->  ( F  Fn  A  ->  ( ( F  |`  { B } ) : { B } --> C  <->  ( F `  B )  e.  C
) ) )
2827impcom 125 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F  |`  { B } ) : { B } --> C  <->  ( F `  B )  e.  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {csn 3622   <.cop 3625    |` cres 4665    Fn wfn 5253   -->wf 5254   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator