ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fressnfv Unicode version

Theorem fressnfv 5826
Description: The value of a function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
fressnfv  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F  |`  { B } ) : { B } --> C  <->  ( F `  B )  e.  C
) )

Proof of Theorem fressnfv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sneq 3677 . . . . . 6  |-  ( x  =  B  ->  { x }  =  { B } )
2 reseq2 5000 . . . . . . . 8  |-  ( { x }  =  { B }  ->  ( F  |`  { x } )  =  ( F  |`  { B } ) )
32feq1d 5460 . . . . . . 7  |-  ( { x }  =  { B }  ->  ( ( F  |`  { x } ) : {
x } --> C  <->  ( F  |` 
{ B } ) : { x } --> C ) )
4 feq2 5457 . . . . . . 7  |-  ( { x }  =  { B }  ->  ( ( F  |`  { B } ) : {
x } --> C  <->  ( F  |` 
{ B } ) : { B } --> C ) )
53, 4bitrd 188 . . . . . 6  |-  ( { x }  =  { B }  ->  ( ( F  |`  { x } ) : {
x } --> C  <->  ( F  |` 
{ B } ) : { B } --> C ) )
61, 5syl 14 . . . . 5  |-  ( x  =  B  ->  (
( F  |`  { x } ) : {
x } --> C  <->  ( F  |` 
{ B } ) : { B } --> C ) )
7 fveq2 5627 . . . . . 6  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
87eleq1d 2298 . . . . 5  |-  ( x  =  B  ->  (
( F `  x
)  e.  C  <->  ( F `  B )  e.  C
) )
96, 8bibi12d 235 . . . 4  |-  ( x  =  B  ->  (
( ( F  |`  { x } ) : { x } --> C 
<->  ( F `  x
)  e.  C )  <-> 
( ( F  |`  { B } ) : { B } --> C  <->  ( F `  B )  e.  C
) ) )
109imbi2d 230 . . 3  |-  ( x  =  B  ->  (
( F  Fn  A  ->  ( ( F  |`  { x } ) : { x } --> C 
<->  ( F `  x
)  e.  C ) )  <->  ( F  Fn  A  ->  ( ( F  |`  { B } ) : { B } --> C 
<->  ( F `  B
)  e.  C ) ) ) )
11 fnressn 5825 . . . . 5  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } )
12 vsnid 3698 . . . . . . . . . 10  |-  x  e. 
{ x }
13 fvres 5651 . . . . . . . . . 10  |-  ( x  e.  { x }  ->  ( ( F  |`  { x } ) `
 x )  =  ( F `  x
) )
1412, 13ax-mp 5 . . . . . . . . 9  |-  ( ( F  |`  { x } ) `  x
)  =  ( F `
 x )
1514opeq2i 3861 . . . . . . . 8  |-  <. x ,  ( ( F  |`  { x } ) `
 x ) >.  =  <. x ,  ( F `  x )
>.
1615sneqi 3678 . . . . . . 7  |-  { <. x ,  ( ( F  |`  { x } ) `
 x ) >. }  =  { <. x ,  ( F `  x ) >. }
1716eqeq2i 2240 . . . . . 6  |-  ( ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. }  <->  ( F  |` 
{ x } )  =  { <. x ,  ( F `  x ) >. } )
18 vex 2802 . . . . . . . 8  |-  x  e. 
_V
1918fsn2 5809 . . . . . . 7  |-  ( ( F  |`  { x } ) : {
x } --> C  <->  ( (
( F  |`  { x } ) `  x
)  e.  C  /\  ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. } ) )
20 iba 300 . . . . . . . 8  |-  ( ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. }  ->  (
( ( F  |`  { x } ) `
 x )  e.  C  <->  ( ( ( F  |`  { x } ) `  x
)  e.  C  /\  ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. } ) ) )
2114eleq1i 2295 . . . . . . . 8  |-  ( ( ( F  |`  { x } ) `  x
)  e.  C  <->  ( F `  x )  e.  C
)
2220, 21bitr3di 195 . . . . . . 7  |-  ( ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. }  ->  (
( ( ( F  |`  { x } ) `
 x )  e.  C  /\  ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `
 x ) >. } )  <->  ( F `  x )  e.  C
) )
2319, 22bitrid 192 . . . . . 6  |-  ( ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. }  ->  (
( F  |`  { x } ) : {
x } --> C  <->  ( F `  x )  e.  C
) )
2417, 23sylbir 135 . . . . 5  |-  ( ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. }  ->  ( ( F  |`  { x } ) : { x } --> C 
<->  ( F `  x
)  e.  C ) )
2511, 24syl 14 . . . 4  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F  |`  { x } ) : { x } --> C 
<->  ( F `  x
)  e.  C ) )
2625expcom 116 . . 3  |-  ( x  e.  A  ->  ( F  Fn  A  ->  ( ( F  |`  { x } ) : {
x } --> C  <->  ( F `  x )  e.  C
) ) )
2710, 26vtoclga 2867 . 2  |-  ( B  e.  A  ->  ( F  Fn  A  ->  ( ( F  |`  { B } ) : { B } --> C  <->  ( F `  B )  e.  C
) ) )
2827impcom 125 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F  |`  { B } ) : { B } --> C  <->  ( F `  B )  e.  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {csn 3666   <.cop 3669    |` cres 4721    Fn wfn 5313   -->wf 5314   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator