Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fressnfv | Unicode version |
Description: The value of a function restricted to a singleton. (Contributed by NM, 9-Oct-2004.) |
Ref | Expression |
---|---|
fressnfv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3587 | . . . . . 6 | |
2 | reseq2 4879 | . . . . . . . 8 | |
3 | 2 | feq1d 5324 | . . . . . . 7 |
4 | feq2 5321 | . . . . . . 7 | |
5 | 3, 4 | bitrd 187 | . . . . . 6 |
6 | 1, 5 | syl 14 | . . . . 5 |
7 | fveq2 5486 | . . . . . 6 | |
8 | 7 | eleq1d 2235 | . . . . 5 |
9 | 6, 8 | bibi12d 234 | . . . 4 |
10 | 9 | imbi2d 229 | . . 3 |
11 | fnressn 5671 | . . . . 5 | |
12 | vsnid 3608 | . . . . . . . . . 10 | |
13 | fvres 5510 | . . . . . . . . . 10 | |
14 | 12, 13 | ax-mp 5 | . . . . . . . . 9 |
15 | 14 | opeq2i 3762 | . . . . . . . 8 |
16 | 15 | sneqi 3588 | . . . . . . 7 |
17 | 16 | eqeq2i 2176 | . . . . . 6 |
18 | vex 2729 | . . . . . . . 8 | |
19 | 18 | fsn2 5659 | . . . . . . 7 |
20 | iba 298 | . . . . . . . 8 | |
21 | 14 | eleq1i 2232 | . . . . . . . 8 |
22 | 20, 21 | bitr3di 194 | . . . . . . 7 |
23 | 19, 22 | syl5bb 191 | . . . . . 6 |
24 | 17, 23 | sylbir 134 | . . . . 5 |
25 | 11, 24 | syl 14 | . . . 4 |
26 | 25 | expcom 115 | . . 3 |
27 | 10, 26 | vtoclga 2792 | . 2 |
28 | 27 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 csn 3576 cop 3579 cres 4606 wfn 5183 wf 5184 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |