| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fressnfv | Unicode version | ||
| Description: The value of a function restricted to a singleton. (Contributed by NM, 9-Oct-2004.) |
| Ref | Expression |
|---|---|
| fressnfv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3634 |
. . . . . 6
| |
| 2 | reseq2 4942 |
. . . . . . . 8
| |
| 3 | 2 | feq1d 5397 |
. . . . . . 7
|
| 4 | feq2 5394 |
. . . . . . 7
| |
| 5 | 3, 4 | bitrd 188 |
. . . . . 6
|
| 6 | 1, 5 | syl 14 |
. . . . 5
|
| 7 | fveq2 5561 |
. . . . . 6
| |
| 8 | 7 | eleq1d 2265 |
. . . . 5
|
| 9 | 6, 8 | bibi12d 235 |
. . . 4
|
| 10 | 9 | imbi2d 230 |
. . 3
|
| 11 | fnressn 5751 |
. . . . 5
| |
| 12 | vsnid 3655 |
. . . . . . . . . 10
| |
| 13 | fvres 5585 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | ax-mp 5 |
. . . . . . . . 9
|
| 15 | 14 | opeq2i 3813 |
. . . . . . . 8
|
| 16 | 15 | sneqi 3635 |
. . . . . . 7
|
| 17 | 16 | eqeq2i 2207 |
. . . . . 6
|
| 18 | vex 2766 |
. . . . . . . 8
| |
| 19 | 18 | fsn2 5739 |
. . . . . . 7
|
| 20 | iba 300 |
. . . . . . . 8
| |
| 21 | 14 | eleq1i 2262 |
. . . . . . . 8
|
| 22 | 20, 21 | bitr3di 195 |
. . . . . . 7
|
| 23 | 19, 22 | bitrid 192 |
. . . . . 6
|
| 24 | 17, 23 | sylbir 135 |
. . . . 5
|
| 25 | 11, 24 | syl 14 |
. . . 4
|
| 26 | 25 | expcom 116 |
. . 3
|
| 27 | 10, 26 | vtoclga 2830 |
. 2
|
| 28 | 27 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |