ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snriota Unicode version

Theorem snriota 5986
Description: A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.)
Assertion
Ref Expression
snriota  |-  ( E! x  e.  A  ph  ->  { x  e.  A  |  ph }  =  {
( iota_ x  e.  A  ph ) } )

Proof of Theorem snriota
StepHypRef Expression
1 df-reu 2515 . . 3  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
2 sniota 5309 . . 3  |-  ( E! x ( x  e.  A  /\  ph )  ->  { x  |  ( x  e.  A  /\  ph ) }  =  {
( iota x ( x  e.  A  /\  ph ) ) } )
31, 2sylbi 121 . 2  |-  ( E! x  e.  A  ph  ->  { x  |  ( x  e.  A  /\  ph ) }  =  {
( iota x ( x  e.  A  /\  ph ) ) } )
4 df-rab 2517 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
5 df-riota 5954 . . 3  |-  ( iota_ x  e.  A  ph )  =  ( iota x
( x  e.  A  /\  ph ) )
65sneqi 3678 . 2  |-  { (
iota_ x  e.  A  ph ) }  =  {
( iota x ( x  e.  A  /\  ph ) ) }
73, 4, 63eqtr4g 2287 1  |-  ( E! x  e.  A  ph  ->  { x  e.  A  |  ph }  =  {
( iota_ x  e.  A  ph ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   E!weu 2077    e. wcel 2200   {cab 2215   E!wreu 2510   {crab 2512   {csn 3666   iotacio 5276   iota_crio 5953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-sn 3672  df-pr 3673  df-uni 3889  df-iota 5278  df-riota 5954
This theorem is referenced by:  divalgmod  12438
  Copyright terms: Public domain W3C validator