ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snriota Unicode version

Theorem snriota 5850
Description: A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.)
Assertion
Ref Expression
snriota  |-  ( E! x  e.  A  ph  ->  { x  e.  A  |  ph }  =  {
( iota_ x  e.  A  ph ) } )

Proof of Theorem snriota
StepHypRef Expression
1 df-reu 2460 . . 3  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
2 sniota 5199 . . 3  |-  ( E! x ( x  e.  A  /\  ph )  ->  { x  |  ( x  e.  A  /\  ph ) }  =  {
( iota x ( x  e.  A  /\  ph ) ) } )
31, 2sylbi 121 . 2  |-  ( E! x  e.  A  ph  ->  { x  |  ( x  e.  A  /\  ph ) }  =  {
( iota x ( x  e.  A  /\  ph ) ) } )
4 df-rab 2462 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
5 df-riota 5821 . . 3  |-  ( iota_ x  e.  A  ph )  =  ( iota x
( x  e.  A  /\  ph ) )
65sneqi 3601 . 2  |-  { (
iota_ x  e.  A  ph ) }  =  {
( iota x ( x  e.  A  /\  ph ) ) }
73, 4, 63eqtr4g 2233 1  |-  ( E! x  e.  A  ph  ->  { x  e.  A  |  ph }  =  {
( iota_ x  e.  A  ph ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   E!weu 2024    e. wcel 2146   {cab 2161   E!wreu 2455   {crab 2457   {csn 3589   iotacio 5168   iota_crio 5820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-un 3131  df-sn 3595  df-pr 3596  df-uni 3806  df-iota 5170  df-riota 5821
This theorem is referenced by:  divalgmod  11899
  Copyright terms: Public domain W3C validator