ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snriota Unicode version

Theorem snriota 5903
Description: A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.)
Assertion
Ref Expression
snriota  |-  ( E! x  e.  A  ph  ->  { x  e.  A  |  ph }  =  {
( iota_ x  e.  A  ph ) } )

Proof of Theorem snriota
StepHypRef Expression
1 df-reu 2479 . . 3  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
2 sniota 5245 . . 3  |-  ( E! x ( x  e.  A  /\  ph )  ->  { x  |  ( x  e.  A  /\  ph ) }  =  {
( iota x ( x  e.  A  /\  ph ) ) } )
31, 2sylbi 121 . 2  |-  ( E! x  e.  A  ph  ->  { x  |  ( x  e.  A  /\  ph ) }  =  {
( iota x ( x  e.  A  /\  ph ) ) } )
4 df-rab 2481 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
5 df-riota 5873 . . 3  |-  ( iota_ x  e.  A  ph )  =  ( iota x
( x  e.  A  /\  ph ) )
65sneqi 3630 . 2  |-  { (
iota_ x  e.  A  ph ) }  =  {
( iota x ( x  e.  A  /\  ph ) ) }
73, 4, 63eqtr4g 2251 1  |-  ( E! x  e.  A  ph  ->  { x  e.  A  |  ph }  =  {
( iota_ x  e.  A  ph ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E!weu 2042    e. wcel 2164   {cab 2179   E!wreu 2474   {crab 2476   {csn 3618   iotacio 5213   iota_crio 5872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-sn 3624  df-pr 3625  df-uni 3836  df-iota 5215  df-riota 5873
This theorem is referenced by:  divalgmod  12068
  Copyright terms: Public domain W3C validator