ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snriota Unicode version

Theorem snriota 5838
Description: A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.)
Assertion
Ref Expression
snriota  |-  ( E! x  e.  A  ph  ->  { x  e.  A  |  ph }  =  {
( iota_ x  e.  A  ph ) } )

Proof of Theorem snriota
StepHypRef Expression
1 df-reu 2455 . . 3  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
2 sniota 5189 . . 3  |-  ( E! x ( x  e.  A  /\  ph )  ->  { x  |  ( x  e.  A  /\  ph ) }  =  {
( iota x ( x  e.  A  /\  ph ) ) } )
31, 2sylbi 120 . 2  |-  ( E! x  e.  A  ph  ->  { x  |  ( x  e.  A  /\  ph ) }  =  {
( iota x ( x  e.  A  /\  ph ) ) } )
4 df-rab 2457 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
5 df-riota 5809 . . 3  |-  ( iota_ x  e.  A  ph )  =  ( iota x
( x  e.  A  /\  ph ) )
65sneqi 3595 . 2  |-  { (
iota_ x  e.  A  ph ) }  =  {
( iota x ( x  e.  A  /\  ph ) ) }
73, 4, 63eqtr4g 2228 1  |-  ( E! x  e.  A  ph  ->  { x  e.  A  |  ph }  =  {
( iota_ x  e.  A  ph ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348   E!weu 2019    e. wcel 2141   {cab 2156   E!wreu 2450   {crab 2452   {csn 3583   iotacio 5158   iota_crio 5808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-sn 3589  df-pr 3590  df-uni 3797  df-iota 5160  df-riota 5809
This theorem is referenced by:  divalgmod  11886
  Copyright terms: Public domain W3C validator