ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snssgOLD Unicode version

Theorem snssgOLD 3803
Description: Obsolete version of snssgOLD 3803 as of 1-Jan-2025. (Contributed by NM, 22-Jul-2001.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snssgOLD  |-  ( A  e.  V  ->  ( A  e.  B  <->  { A }  C_  B ) )

Proof of Theorem snssgOLD
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eleq1 2292 . 2  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
2 sneq 3677 . . 3  |-  ( x  =  A  ->  { x }  =  { A } )
32sseq1d 3253 . 2  |-  ( x  =  A  ->  ( { x }  C_  B 
<->  { A }  C_  B ) )
4 vex 2802 . . 3  |-  x  e. 
_V
54snss 3802 . 2  |-  ( x  e.  B  <->  { x }  C_  B )
61, 3, 5vtoclbg 2862 1  |-  ( A  e.  V  ->  ( A  e.  B  <->  { A }  C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200    C_ wss 3197   {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-sn 3672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator