ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq1d Unicode version

Theorem sseq1d 3213
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
sseq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
sseq1d  |-  ( ph  ->  ( A  C_  C  <->  B 
C_  C ) )

Proof of Theorem sseq1d
StepHypRef Expression
1 sseq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 sseq1 3207 . 2  |-  ( A  =  B  ->  ( A  C_  C  <->  B  C_  C
) )
31, 2syl 14 1  |-  ( ph  ->  ( A  C_  C  <->  B 
C_  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  sseq12d  3215  eqsstrd  3220  snssgOLD  3759  ssiun2s  3961  treq  4138  onsucsssucexmid  4564  funimass1  5336  feq1  5393  sbcfg  5409  fvmptssdm  5649  fvimacnvi  5679  nnsucsssuc  6559  ereq1  6608  elpm2r  6734  fipwssg  7054  nnnninf  7201  ctssexmid  7225  rspssp  14128  iscnp  14543  iscnp4  14562  cnntr  14569  cnconst2  14577  cnptopresti  14582  cnptoprest  14583  txbas  14602  txcnp  14615  txdis  14621  txdis1cn  14622  blssps  14771  blss  14772  ssblex  14775  blin2  14776  metss2  14842  metrest  14850  metcnp3  14855  cnopnap  14955  limccl  15003  ellimc3apf  15004
  Copyright terms: Public domain W3C validator