| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq1d | Unicode version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| sseq1d.1 |
|
| Ref | Expression |
|---|---|
| sseq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 |
. 2
| |
| 2 | sseq1 3220 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: sseq12d 3228 eqsstrd 3233 snssgOLD 3775 ssiun2s 3980 treq 4159 onsucsssucexmid 4588 funimass1 5365 feq1 5423 sbcfg 5439 fvmptssdm 5682 fvimacnvi 5712 nnsucsssuc 6596 ereq1 6645 elpm2r 6771 fipwssg 7102 nnnninf 7249 ctssexmid 7273 rspssp 14341 iscnp 14756 iscnp4 14775 cnntr 14782 cnconst2 14790 cnptopresti 14795 cnptoprest 14796 txbas 14815 txcnp 14828 txdis 14834 txdis1cn 14835 blssps 14984 blss 14985 ssblex 14988 blin2 14989 metss2 15055 metrest 15063 metcnp3 15068 cnopnap 15168 limccl 15216 ellimc3apf 15217 |
| Copyright terms: Public domain | W3C validator |