| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq1d | Unicode version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| sseq1d.1 |
|
| Ref | Expression |
|---|---|
| sseq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 |
. 2
| |
| 2 | sseq1 3207 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sseq12d 3215 eqsstrd 3220 snssgOLD 3759 ssiun2s 3961 treq 4138 onsucsssucexmid 4564 funimass1 5336 feq1 5393 sbcfg 5409 fvmptssdm 5649 fvimacnvi 5679 nnsucsssuc 6559 ereq1 6608 elpm2r 6734 fipwssg 7054 nnnninf 7201 ctssexmid 7225 rspssp 14128 iscnp 14543 iscnp4 14562 cnntr 14569 cnconst2 14577 cnptopresti 14582 cnptoprest 14583 txbas 14602 txcnp 14615 txdis 14621 txdis1cn 14622 blssps 14771 blss 14772 ssblex 14775 blin2 14776 metss2 14842 metrest 14850 metcnp3 14855 cnopnap 14955 limccl 15003 ellimc3apf 15004 |
| Copyright terms: Public domain | W3C validator |