ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq1d Unicode version

Theorem sseq1d 3221
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
sseq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
sseq1d  |-  ( ph  ->  ( A  C_  C  <->  B 
C_  C ) )

Proof of Theorem sseq1d
StepHypRef Expression
1 sseq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 sseq1 3215 . 2  |-  ( A  =  B  ->  ( A  C_  C  <->  B  C_  C
) )
31, 2syl 14 1  |-  ( ph  ->  ( A  C_  C  <->  B 
C_  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1372    C_ wss 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-in 3171  df-ss 3178
This theorem is referenced by:  sseq12d  3223  eqsstrd  3228  snssgOLD  3768  ssiun2s  3970  treq  4147  onsucsssucexmid  4574  funimass1  5350  feq1  5407  sbcfg  5423  fvmptssdm  5663  fvimacnvi  5693  nnsucsssuc  6577  ereq1  6626  elpm2r  6752  fipwssg  7080  nnnninf  7227  ctssexmid  7251  rspssp  14227  iscnp  14642  iscnp4  14661  cnntr  14668  cnconst2  14676  cnptopresti  14681  cnptoprest  14682  txbas  14701  txcnp  14714  txdis  14720  txdis1cn  14721  blssps  14870  blss  14871  ssblex  14874  blin2  14875  metss2  14941  metrest  14949  metcnp3  14954  cnopnap  15054  limccl  15102  ellimc3apf  15103
  Copyright terms: Public domain W3C validator