| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq1d | Unicode version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| sseq1d.1 |
|
| Ref | Expression |
|---|---|
| sseq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 |
. 2
| |
| 2 | sseq1 3215 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: sseq12d 3223 eqsstrd 3228 snssgOLD 3768 ssiun2s 3970 treq 4147 onsucsssucexmid 4574 funimass1 5350 feq1 5407 sbcfg 5423 fvmptssdm 5663 fvimacnvi 5693 nnsucsssuc 6577 ereq1 6626 elpm2r 6752 fipwssg 7080 nnnninf 7227 ctssexmid 7251 rspssp 14227 iscnp 14642 iscnp4 14661 cnntr 14668 cnconst2 14676 cnptopresti 14681 cnptoprest 14682 txbas 14701 txcnp 14714 txdis 14720 txdis1cn 14721 blssps 14870 blss 14871 ssblex 14874 blin2 14875 metss2 14941 metrest 14949 metcnp3 14954 cnopnap 15054 limccl 15102 ellimc3apf 15103 |
| Copyright terms: Public domain | W3C validator |