| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq1d | Unicode version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| sseq1d.1 |
|
| Ref | Expression |
|---|---|
| sseq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 |
. 2
| |
| 2 | sseq1 3207 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sseq12d 3215 eqsstrd 3220 snssgOLD 3759 ssiun2s 3961 treq 4138 onsucsssucexmid 4564 funimass1 5336 feq1 5393 sbcfg 5409 fvmptssdm 5649 fvimacnvi 5679 nnsucsssuc 6559 ereq1 6608 elpm2r 6734 fipwssg 7054 nnnninf 7201 ctssexmid 7225 rspssp 14126 iscnp 14519 iscnp4 14538 cnntr 14545 cnconst2 14553 cnptopresti 14558 cnptoprest 14559 txbas 14578 txcnp 14591 txdis 14597 txdis1cn 14598 blssps 14747 blss 14748 ssblex 14751 blin2 14752 metss2 14818 metrest 14826 metcnp3 14831 cnopnap 14931 limccl 14979 ellimc3apf 14980 |
| Copyright terms: Public domain | W3C validator |