ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq1d Unicode version

Theorem sseq1d 3171
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
sseq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
sseq1d  |-  ( ph  ->  ( A  C_  C  <->  B 
C_  C ) )

Proof of Theorem sseq1d
StepHypRef Expression
1 sseq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 sseq1 3165 . 2  |-  ( A  =  B  ->  ( A  C_  C  <->  B  C_  C
) )
31, 2syl 14 1  |-  ( ph  ->  ( A  C_  C  <->  B 
C_  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129
This theorem is referenced by:  sseq12d  3173  eqsstrd  3178  snssg  3709  ssiun2s  3910  treq  4086  onsucsssucexmid  4504  funimass1  5265  feq1  5320  sbcfg  5336  fvmptssdm  5570  fvimacnvi  5599  nnsucsssuc  6460  ereq1  6508  elpm2r  6632  fipwssg  6944  nnnninf  7090  ctssexmid  7114  iscnp  12839  iscnp4  12858  cnntr  12865  cnconst2  12873  cnptopresti  12878  cnptoprest  12879  txbas  12898  txcnp  12911  txdis  12917  txdis1cn  12918  blssps  13067  blss  13068  ssblex  13071  blin2  13072  metss2  13138  metrest  13146  metcnp3  13151  cnopnap  13234  limccl  13268  ellimc3apf  13269
  Copyright terms: Public domain W3C validator