| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq1d | Unicode version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| sseq1d.1 |
|
| Ref | Expression |
|---|---|
| sseq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 |
. 2
| |
| 2 | sseq1 3247 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sseq12d 3255 eqsstrd 3260 snssgOLD 3803 ssiun2s 4008 treq 4187 onsucsssucexmid 4618 funimass1 5397 feq1 5455 sbcfg 5471 fvmptssdm 5718 fvimacnvi 5748 nnsucsssuc 6636 ereq1 6685 elpm2r 6811 fipwssg 7142 nnnninf 7289 ctssexmid 7313 rspssp 14452 iscnp 14867 iscnp4 14886 cnntr 14893 cnconst2 14901 cnptopresti 14906 cnptoprest 14907 txbas 14926 txcnp 14939 txdis 14945 txdis1cn 14946 blssps 15095 blss 15096 ssblex 15099 blin2 15100 metss2 15166 metrest 15174 metcnp3 15179 cnopnap 15279 limccl 15327 ellimc3apf 15328 ausgrumgrien 15962 ausgrusgrien 15963 |
| Copyright terms: Public domain | W3C validator |