| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq1d | Unicode version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| sseq1d.1 |
|
| Ref | Expression |
|---|---|
| sseq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 |
. 2
| |
| 2 | sseq1 3215 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: sseq12d 3223 eqsstrd 3228 snssgOLD 3768 ssiun2s 3970 treq 4147 onsucsssucexmid 4574 funimass1 5350 feq1 5407 sbcfg 5423 fvmptssdm 5663 fvimacnvi 5693 nnsucsssuc 6577 ereq1 6626 elpm2r 6752 fipwssg 7080 nnnninf 7227 ctssexmid 7251 rspssp 14198 iscnp 14613 iscnp4 14632 cnntr 14639 cnconst2 14647 cnptopresti 14652 cnptoprest 14653 txbas 14672 txcnp 14685 txdis 14691 txdis1cn 14692 blssps 14841 blss 14842 ssblex 14845 blin2 14846 metss2 14912 metrest 14920 metcnp3 14925 cnopnap 15025 limccl 15073 ellimc3apf 15074 |
| Copyright terms: Public domain | W3C validator |