![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseq1d | Unicode version |
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
sseq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sseq1d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sseq1 3203 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: sseq12d 3211 eqsstrd 3216 snssgOLD 3755 ssiun2s 3957 treq 4134 onsucsssucexmid 4560 funimass1 5332 feq1 5387 sbcfg 5403 fvmptssdm 5643 fvimacnvi 5673 nnsucsssuc 6547 ereq1 6596 elpm2r 6722 fipwssg 7040 nnnninf 7187 ctssexmid 7211 rspssp 13993 iscnp 14378 iscnp4 14397 cnntr 14404 cnconst2 14412 cnptopresti 14417 cnptoprest 14418 txbas 14437 txcnp 14450 txdis 14456 txdis1cn 14457 blssps 14606 blss 14607 ssblex 14610 blin2 14611 metss2 14677 metrest 14685 metcnp3 14690 cnopnap 14790 limccl 14838 ellimc3apf 14839 |
Copyright terms: Public domain | W3C validator |