ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq1d Unicode version

Theorem sseq1d 3212
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
sseq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
sseq1d  |-  ( ph  ->  ( A  C_  C  <->  B 
C_  C ) )

Proof of Theorem sseq1d
StepHypRef Expression
1 sseq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 sseq1 3206 . 2  |-  ( A  =  B  ->  ( A  C_  C  <->  B  C_  C
) )
31, 2syl 14 1  |-  ( ph  ->  ( A  C_  C  <->  B 
C_  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  sseq12d  3214  eqsstrd  3219  snssgOLD  3758  ssiun2s  3960  treq  4137  onsucsssucexmid  4563  funimass1  5335  feq1  5390  sbcfg  5406  fvmptssdm  5646  fvimacnvi  5676  nnsucsssuc  6550  ereq1  6599  elpm2r  6725  fipwssg  7045  nnnninf  7192  ctssexmid  7216  rspssp  14050  iscnp  14435  iscnp4  14454  cnntr  14461  cnconst2  14469  cnptopresti  14474  cnptoprest  14475  txbas  14494  txcnp  14507  txdis  14513  txdis1cn  14514  blssps  14663  blss  14664  ssblex  14667  blin2  14668  metss2  14734  metrest  14742  metcnp3  14747  cnopnap  14847  limccl  14895  ellimc3apf  14896
  Copyright terms: Public domain W3C validator