ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq1d Unicode version

Theorem sseq1d 3226
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
sseq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
sseq1d  |-  ( ph  ->  ( A  C_  C  <->  B 
C_  C ) )

Proof of Theorem sseq1d
StepHypRef Expression
1 sseq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 sseq1 3220 . 2  |-  ( A  =  B  ->  ( A  C_  C  <->  B  C_  C
) )
31, 2syl 14 1  |-  ( ph  ->  ( A  C_  C  <->  B 
C_  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    C_ wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3176  df-ss 3183
This theorem is referenced by:  sseq12d  3228  eqsstrd  3233  snssgOLD  3775  ssiun2s  3980  treq  4159  onsucsssucexmid  4588  funimass1  5365  feq1  5423  sbcfg  5439  fvmptssdm  5682  fvimacnvi  5712  nnsucsssuc  6596  ereq1  6645  elpm2r  6771  fipwssg  7102  nnnninf  7249  ctssexmid  7273  rspssp  14341  iscnp  14756  iscnp4  14775  cnntr  14782  cnconst2  14790  cnptopresti  14795  cnptoprest  14796  txbas  14815  txcnp  14828  txdis  14834  txdis1cn  14835  blssps  14984  blss  14985  ssblex  14988  blin2  14989  metss2  15055  metrest  15063  metcnp3  15068  cnopnap  15168  limccl  15216  ellimc3apf  15217
  Copyright terms: Public domain W3C validator