| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq1d | Unicode version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| sseq1d.1 |
|
| Ref | Expression |
|---|---|
| sseq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 |
. 2
| |
| 2 | sseq1 3206 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sseq12d 3214 eqsstrd 3219 snssgOLD 3758 ssiun2s 3960 treq 4137 onsucsssucexmid 4563 funimass1 5335 feq1 5390 sbcfg 5406 fvmptssdm 5646 fvimacnvi 5676 nnsucsssuc 6550 ereq1 6599 elpm2r 6725 fipwssg 7045 nnnninf 7192 ctssexmid 7216 rspssp 14050 iscnp 14435 iscnp4 14454 cnntr 14461 cnconst2 14469 cnptopresti 14474 cnptoprest 14475 txbas 14494 txcnp 14507 txdis 14513 txdis1cn 14514 blssps 14663 blss 14664 ssblex 14667 blin2 14668 metss2 14734 metrest 14742 metcnp3 14747 cnopnap 14847 limccl 14895 ellimc3apf 14896 |
| Copyright terms: Public domain | W3C validator |