ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq1d Unicode version

Theorem sseq1d 3253
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
sseq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
sseq1d  |-  ( ph  ->  ( A  C_  C  <->  B 
C_  C ) )

Proof of Theorem sseq1d
StepHypRef Expression
1 sseq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 sseq1 3247 . 2  |-  ( A  =  B  ->  ( A  C_  C  <->  B  C_  C
) )
31, 2syl 14 1  |-  ( ph  ->  ( A  C_  C  <->  B 
C_  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  sseq12d  3255  eqsstrd  3260  snssgOLD  3803  ssiun2s  4008  treq  4187  onsucsssucexmid  4618  funimass1  5397  feq1  5455  sbcfg  5471  fvmptssdm  5718  fvimacnvi  5748  nnsucsssuc  6636  ereq1  6685  elpm2r  6811  fipwssg  7142  nnnninf  7289  ctssexmid  7313  rspssp  14452  iscnp  14867  iscnp4  14886  cnntr  14893  cnconst2  14901  cnptopresti  14906  cnptoprest  14907  txbas  14926  txcnp  14939  txdis  14945  txdis1cn  14946  blssps  15095  blss  15096  ssblex  15099  blin2  15100  metss2  15166  metrest  15174  metcnp3  15179  cnopnap  15279  limccl  15327  ellimc3apf  15328  ausgrumgrien  15962  ausgrusgrien  15963
  Copyright terms: Public domain W3C validator