ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snssgOLD GIF version

Theorem snssgOLD 3758
Description: Obsolete version of snssgOLD 3758 as of 1-Jan-2025. (Contributed by NM, 22-Jul-2001.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snssgOLD (𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵))

Proof of Theorem snssgOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2259 . 2 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
2 sneq 3633 . . 3 (𝑥 = 𝐴 → {𝑥} = {𝐴})
32sseq1d 3212 . 2 (𝑥 = 𝐴 → ({𝑥} ⊆ 𝐵 ↔ {𝐴} ⊆ 𝐵))
4 vex 2766 . . 3 𝑥 ∈ V
54snss 3757 . 2 (𝑥𝐵 ↔ {𝑥} ⊆ 𝐵)
61, 3, 5vtoclbg 2825 1 (𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  wss 3157  {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-sn 3628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator