| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssgOLD | GIF version | ||
| Description: Obsolete version of snssgOLD 3783 as of 1-Jan-2025. (Contributed by NM, 22-Jul-2001.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| snssgOLD | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2272 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | sneq 3657 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 3 | 2 | sseq1d 3233 | . 2 ⊢ (𝑥 = 𝐴 → ({𝑥} ⊆ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
| 4 | vex 2782 | . . 3 ⊢ 𝑥 ∈ V | |
| 5 | 4 | snss 3782 | . 2 ⊢ (𝑥 ∈ 𝐵 ↔ {𝑥} ⊆ 𝐵) |
| 6 | 1, 3, 5 | vtoclbg 2842 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 ∈ wcel 2180 ⊆ wss 3177 {csn 3646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-in 3183 df-ss 3190 df-sn 3652 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |