ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snssgOLD GIF version

Theorem snssgOLD 3783
Description: Obsolete version of snssgOLD 3783 as of 1-Jan-2025. (Contributed by NM, 22-Jul-2001.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snssgOLD (𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵))

Proof of Theorem snssgOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2272 . 2 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
2 sneq 3657 . . 3 (𝑥 = 𝐴 → {𝑥} = {𝐴})
32sseq1d 3233 . 2 (𝑥 = 𝐴 → ({𝑥} ⊆ 𝐵 ↔ {𝐴} ⊆ 𝐵))
4 vex 2782 . . 3 𝑥 ∈ V
54snss 3782 . 2 (𝑥𝐵 ↔ {𝑥} ⊆ 𝐵)
61, 3, 5vtoclbg 2842 1 (𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1375  wcel 2180  wss 3177  {csn 3646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-in 3183  df-ss 3190  df-sn 3652
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator