ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difsn Unicode version

Theorem difsn 3710
Description: An element not in a set can be removed without affecting the set. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
difsn  |-  ( -.  A  e.  B  -> 
( B  \  { A } )  =  B )

Proof of Theorem difsn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eldifsn 3703 . . 3  |-  ( x  e.  ( B  \  { A } )  <->  ( x  e.  B  /\  x  =/=  A ) )
2 simpl 108 . . . 4  |-  ( ( x  e.  B  /\  x  =/=  A )  ->  x  e.  B )
3 eleq1 2229 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
43biimpcd 158 . . . . . . 7  |-  ( x  e.  B  ->  (
x  =  A  ->  A  e.  B )
)
54necon3bd 2379 . . . . . 6  |-  ( x  e.  B  ->  ( -.  A  e.  B  ->  x  =/=  A ) )
65com12 30 . . . . 5  |-  ( -.  A  e.  B  -> 
( x  e.  B  ->  x  =/=  A ) )
76ancld 323 . . . 4  |-  ( -.  A  e.  B  -> 
( x  e.  B  ->  ( x  e.  B  /\  x  =/=  A
) ) )
82, 7impbid2 142 . . 3  |-  ( -.  A  e.  B  -> 
( ( x  e.  B  /\  x  =/= 
A )  <->  x  e.  B ) )
91, 8syl5bb 191 . 2  |-  ( -.  A  e.  B  -> 
( x  e.  ( B  \  { A } )  <->  x  e.  B ) )
109eqrdv 2163 1  |-  ( -.  A  e.  B  -> 
( B  \  { A } )  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    =/= wne 2336    \ cdif 3113   {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-v 2728  df-dif 3118  df-sn 3582
This theorem is referenced by:  difsnb  3716  fisseneq  6897  dfn2  9127
  Copyright terms: Public domain W3C validator