ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difsn Unicode version

Theorem difsn 3770
Description: An element not in a set can be removed without affecting the set. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
difsn  |-  ( -.  A  e.  B  -> 
( B  \  { A } )  =  B )

Proof of Theorem difsn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eldifsn 3760 . . 3  |-  ( x  e.  ( B  \  { A } )  <->  ( x  e.  B  /\  x  =/=  A ) )
2 simpl 109 . . . 4  |-  ( ( x  e.  B  /\  x  =/=  A )  ->  x  e.  B )
3 eleq1 2268 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
43biimpcd 159 . . . . . . 7  |-  ( x  e.  B  ->  (
x  =  A  ->  A  e.  B )
)
54necon3bd 2419 . . . . . 6  |-  ( x  e.  B  ->  ( -.  A  e.  B  ->  x  =/=  A ) )
65com12 30 . . . . 5  |-  ( -.  A  e.  B  -> 
( x  e.  B  ->  x  =/=  A ) )
76ancld 325 . . . 4  |-  ( -.  A  e.  B  -> 
( x  e.  B  ->  ( x  e.  B  /\  x  =/=  A
) ) )
82, 7impbid2 143 . . 3  |-  ( -.  A  e.  B  -> 
( ( x  e.  B  /\  x  =/= 
A )  <->  x  e.  B ) )
91, 8bitrid 192 . 2  |-  ( -.  A  e.  B  -> 
( x  e.  ( B  \  { A } )  <->  x  e.  B ) )
109eqrdv 2203 1  |-  ( -.  A  e.  B  -> 
( B  \  { A } )  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    =/= wne 2376    \ cdif 3163   {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-v 2774  df-dif 3168  df-sn 3639
This theorem is referenced by:  difsnb  3776  fisseneq  7033  dfn2  9310
  Copyright terms: Public domain W3C validator