ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snsstp1 Unicode version

Theorem snsstp1 3730
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
Assertion
Ref Expression
snsstp1  |-  { A }  C_  { A ,  B ,  C }

Proof of Theorem snsstp1
StepHypRef Expression
1 snsspr1 3728 . . 3  |-  { A }  C_  { A ,  B }
2 ssun1 3290 . . 3  |-  { A ,  B }  C_  ( { A ,  B }  u.  { C } )
31, 2sstri 3156 . 2  |-  { A }  C_  ( { A ,  B }  u.  { C } )
4 df-tp 3591 . 2  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
53, 4sseqtrri 3182 1  |-  { A }  C_  { A ,  B ,  C }
Colors of variables: wff set class
Syntax hints:    u. cun 3119    C_ wss 3121   {csn 3583   {cpr 3584   {ctp 3585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pr 3590  df-tp 3591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator