ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snsspr1 Unicode version

Theorem snsspr1 3634
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004.)
Assertion
Ref Expression
snsspr1  |-  { A }  C_  { A ,  B }

Proof of Theorem snsspr1
StepHypRef Expression
1 ssun1 3205 . 2  |-  { A }  C_  ( { A }  u.  { B } )
2 df-pr 3500 . 2  |-  { A ,  B }  =  ( { A }  u.  { B } )
31, 2sseqtr4i 3098 1  |-  { A }  C_  { A ,  B }
Colors of variables: wff set class
Syntax hints:    u. cun 3035    C_ wss 3037   {csn 3493   {cpr 3494
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-v 2659  df-un 3041  df-in 3043  df-ss 3050  df-pr 3500
This theorem is referenced by:  snsstp1  3636  ssprr  3649  uniop  4137  op1stb  4359  op1stbg  4360  ltrelxr  7749
  Copyright terms: Public domain W3C validator