![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sstri | Unicode version |
Description: Subclass transitivity inference. (Contributed by NM, 5-May-2000.) |
Ref | Expression |
---|---|
sstri.1 |
![]() ![]() ![]() ![]() |
sstri.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sstri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstri.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | sstri.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | sstr2 3164 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mp2 16 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-in 3137 df-ss 3144 |
This theorem is referenced by: difdif2ss 3394 difdifdirss 3509 snsstp1 3744 snsstp2 3745 nnregexmid 4622 dmexg 4893 rnexg 4894 ssrnres 5073 cossxp 5153 cocnvss 5156 funinsn 5267 fabexg 5405 foimacnv 5481 ssimaex 5580 oprabss 5964 tposssxp 6253 mapsspw 6687 sbthlemi5 6963 sbthlem7 6965 caserel 7089 dmaddpi 7327 dmmulpi 7328 ltrelxr 8021 nnsscn 8927 nn0sscn 9184 nn0ssq 9631 nnssq 9632 qsscn 9634 fzval2 10014 fzossnn 10192 fzo0ssnn0 10218 expcl2lemap 10535 rpexpcl 10542 expge0 10559 expge1 10560 seq3coll 10825 summodclem2a 11392 fsum3cvg3 11407 fsumrpcl 11415 fsumge0 11470 prodmodclem2a 11587 fprodrpcl 11622 fprodge0 11648 fprodge1 11650 infssuzcldc 11955 isprm3 12121 eulerthlemrprm 12232 eulerthlema 12233 eulerthlemh 12234 eulerthlemth 12235 pcprecl 12292 pcprendvds 12293 pcpremul 12296 structfn 12484 strleun 12566 cnfldbas 13599 cnfldadd 13600 cnfldmul 13601 toponsspwpwg 13662 dmtopon 13663 lmbrf 13855 lmres 13888 txcnmpt 13913 qtopbas 14162 tgqioo 14187 dvrecap 14317 cosz12 14341 ioocosf1o 14415 lgsfcl2 14547 2sqlem6 14607 2sqlem8 14610 2sqlem9 14611 |
Copyright terms: Public domain | W3C validator |