![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sstri | Unicode version |
Description: Subclass transitivity inference. (Contributed by NM, 5-May-2000.) |
Ref | Expression |
---|---|
sstri.1 |
![]() ![]() ![]() ![]() |
sstri.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sstri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstri.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | sstri.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | sstr2 3187 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mp2 16 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: difdif2ss 3417 difdifdirss 3532 snsstp1 3769 snsstp2 3770 nnregexmid 4654 dmexg 4927 rnexg 4928 ssrnres 5109 cossxp 5189 cocnvss 5192 funinsn 5304 fabexg 5442 foimacnv 5519 ssimaex 5619 oprabss 6005 tposssxp 6304 mapsspw 6740 sbthlemi5 7022 sbthlem7 7024 caserel 7148 dmaddpi 7387 dmmulpi 7388 ltrelxr 8082 nnsscn 8989 nn0sscn 9248 nn0ssq 9696 nnssq 9697 qsscn 9699 fzval2 10080 fzossnn 10259 fzo0ssnn0 10285 expcl2lemap 10625 rpexpcl 10632 expge0 10649 expge1 10650 seq3coll 10916 summodclem2a 11527 fsum3cvg3 11542 fsumrpcl 11550 fsumge0 11605 prodmodclem2a 11722 fprodrpcl 11757 fprodge0 11783 fprodge1 11785 infssuzcldc 12091 nninfctlemfo 12180 isprm3 12259 eulerthlemrprm 12370 eulerthlema 12371 eulerthlemh 12372 eulerthlemth 12373 pcprecl 12430 pcprendvds 12431 pcpremul 12434 4sqlem11 12542 structfn 12640 strleun 12725 cnfldbas 14059 mpocnfldadd 14060 mpocnfldmul 14062 cnfldcj 14064 cnfldtset 14065 cnfldle 14066 cnfldds 14067 psrplusgg 14173 toponsspwpwg 14201 dmtopon 14202 lmbrf 14394 lmres 14427 txcnmpt 14452 qtopbas 14701 tgqioo 14734 dvrecap 14892 cosz12 14956 ioocosf1o 15030 lgsfcl2 15163 2sqlem6 15277 2sqlem8 15280 2sqlem9 15281 |
Copyright terms: Public domain | W3C validator |