| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstri | Unicode version | ||
| Description: Subclass transitivity inference. (Contributed by NM, 5-May-2000.) |
| Ref | Expression |
|---|---|
| sstri.1 |
|
| sstri.2 |
|
| Ref | Expression |
|---|---|
| sstri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstri.1 |
. 2
| |
| 2 | sstri.2 |
. 2
| |
| 3 | sstr2 3200 |
. 2
| |
| 4 | 1, 2, 3 | mp2 16 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: difdif2ss 3430 difdifdirss 3545 snsstp1 3783 snsstp2 3784 nnregexmid 4669 dmexg 4942 rnexg 4943 ssrnres 5125 cossxp 5205 cocnvss 5208 funinsn 5323 fabexg 5463 foimacnv 5540 ssimaex 5640 oprabss 6031 tposssxp 6335 mapsspw 6771 sbthlemi5 7063 sbthlem7 7065 caserel 7189 dmaddpi 7438 dmmulpi 7439 ltrelxr 8133 nnsscn 9041 nn0sscn 9300 nn0ssq 9749 nnssq 9750 qsscn 9752 fzval2 10133 fzossnn 10313 fzo0ssnn0 10344 infssuzcldc 10378 expcl2lemap 10696 rpexpcl 10703 expge0 10720 expge1 10721 seq3coll 10987 summodclem2a 11692 fsum3cvg3 11707 fsumrpcl 11715 fsumge0 11770 prodmodclem2a 11887 fprodrpcl 11922 fprodge0 11948 fprodge1 11950 nninfctlemfo 12361 isprm3 12440 eulerthlemrprm 12551 eulerthlema 12552 eulerthlemh 12553 eulerthlemth 12554 pcprecl 12612 pcprendvds 12613 pcpremul 12616 4sqlem11 12724 structfn 12851 strleun 12936 prdsvallem 13104 prdsval 13105 prdssca 13107 prdsbas 13108 prdsplusg 13109 prdsmulr 13110 cnfldbas 14322 mpocnfldadd 14323 mpocnfldmul 14325 cnfldcj 14327 cnfldtset 14328 cnfldle 14329 cnfldds 14330 psrplusgg 14440 toponsspwpwg 14494 dmtopon 14495 lmbrf 14687 lmres 14720 txcnmpt 14745 qtopbas 14994 tgqioo 15027 dvrecap 15185 cosz12 15252 ioocosf1o 15326 mpodvdsmulf1o 15462 fsumdvdsmul 15463 lgsfcl2 15483 2sqlem6 15597 2sqlem8 15600 2sqlem9 15601 |
| Copyright terms: Public domain | W3C validator |