![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sstri | Unicode version |
Description: Subclass transitivity inference. (Contributed by NM, 5-May-2000.) |
Ref | Expression |
---|---|
sstri.1 |
![]() ![]() ![]() ![]() |
sstri.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sstri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstri.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | sstri.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | sstr2 3186 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mp2 16 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: difdif2ss 3416 difdifdirss 3531 snsstp1 3768 snsstp2 3769 nnregexmid 4653 dmexg 4926 rnexg 4927 ssrnres 5108 cossxp 5188 cocnvss 5191 funinsn 5303 fabexg 5441 foimacnv 5518 ssimaex 5618 oprabss 6004 tposssxp 6302 mapsspw 6738 sbthlemi5 7020 sbthlem7 7022 caserel 7146 dmaddpi 7385 dmmulpi 7386 ltrelxr 8080 nnsscn 8987 nn0sscn 9245 nn0ssq 9693 nnssq 9694 qsscn 9696 fzval2 10077 fzossnn 10256 fzo0ssnn0 10282 expcl2lemap 10622 rpexpcl 10629 expge0 10646 expge1 10647 seq3coll 10913 summodclem2a 11524 fsum3cvg3 11539 fsumrpcl 11547 fsumge0 11602 prodmodclem2a 11719 fprodrpcl 11754 fprodge0 11780 fprodge1 11782 infssuzcldc 12088 nninfctlemfo 12177 isprm3 12256 eulerthlemrprm 12367 eulerthlema 12368 eulerthlemh 12369 eulerthlemth 12370 pcprecl 12427 pcprendvds 12428 pcpremul 12431 4sqlem11 12539 structfn 12637 strleun 12722 cnfldbas 14051 cnfldadd 14052 cnfldmul 14054 psrplusgg 14162 toponsspwpwg 14190 dmtopon 14191 lmbrf 14383 lmres 14416 txcnmpt 14441 qtopbas 14690 tgqioo 14715 dvrecap 14862 cosz12 14915 ioocosf1o 14989 lgsfcl2 15122 2sqlem6 15207 2sqlem8 15210 2sqlem9 15211 |
Copyright terms: Public domain | W3C validator |