| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstri | Unicode version | ||
| Description: Subclass transitivity inference. (Contributed by NM, 5-May-2000.) |
| Ref | Expression |
|---|---|
| sstri.1 |
|
| sstri.2 |
|
| Ref | Expression |
|---|---|
| sstri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstri.1 |
. 2
| |
| 2 | sstri.2 |
. 2
| |
| 3 | sstr2 3231 |
. 2
| |
| 4 | 1, 2, 3 | mp2 16 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: difdif2ss 3461 difdifdirss 3576 snsstp1 3818 snsstp2 3819 elopabran 4372 nnregexmid 4713 dmexg 4988 rnexg 4989 ssrnres 5171 cossxp 5251 cocnvss 5254 funinsn 5370 fabexg 5513 foimacnv 5590 ssimaex 5695 oprabss 6090 tposssxp 6395 mapsspw 6831 sbthlemi5 7128 sbthlem7 7130 caserel 7254 dmaddpi 7512 dmmulpi 7513 ltrelxr 8207 nnsscn 9115 nn0sscn 9374 nn0ssq 9823 nnssq 9824 qsscn 9826 fzval2 10207 fzossnn 10390 fzo0ssnn0 10421 infssuzcldc 10455 expcl2lemap 10773 rpexpcl 10780 expge0 10797 expge1 10798 seq3coll 11064 summodclem2a 11892 fsum3cvg3 11907 fsumrpcl 11915 fsumge0 11970 prodmodclem2a 12087 fprodrpcl 12122 fprodge0 12148 fprodge1 12150 nninfctlemfo 12561 isprm3 12640 eulerthlemrprm 12751 eulerthlema 12752 eulerthlemh 12753 eulerthlemth 12754 pcprecl 12812 pcprendvds 12813 pcpremul 12816 4sqlem11 12924 structfn 13051 strleun 13137 prdsvallem 13305 prdsval 13306 prdssca 13308 prdsbas 13309 prdsplusg 13310 prdsmulr 13311 cnfldbas 14524 mpocnfldadd 14525 mpocnfldmul 14527 cnfldcj 14529 cnfldtset 14530 cnfldle 14531 cnfldds 14532 psrplusgg 14642 toponsspwpwg 14696 dmtopon 14697 lmbrf 14889 lmres 14922 txcnmpt 14947 qtopbas 15196 tgqioo 15229 dvrecap 15387 cosz12 15454 ioocosf1o 15528 mpodvdsmulf1o 15664 fsumdvdsmul 15665 lgsfcl2 15685 2sqlem6 15799 2sqlem8 15802 2sqlem9 15803 |
| Copyright terms: Public domain | W3C validator |