![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > so0 | GIF version |
Description: Any relation is a strict ordering of the empty set. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
so0 | ⊢ 𝑅 Or ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | po0 4342 | . 2 ⊢ 𝑅 Po ∅ | |
2 | ral0 3548 | . 2 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) | |
3 | df-iso 4328 | . 2 ⊢ (𝑅 Or ∅ ↔ (𝑅 Po ∅ ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) | |
4 | 1, 2, 3 | mpbir2an 944 | 1 ⊢ 𝑅 Or ∅ |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 709 ∀wral 2472 ∅c0 3446 class class class wbr 4029 Po wpo 4325 Or wor 4326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-dif 3155 df-nul 3447 df-po 4327 df-iso 4328 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |