| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > so0 | GIF version | ||
| Description: Any relation is a strict ordering of the empty set. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| so0 | ⊢ 𝑅 Or ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | po0 4379 | . 2 ⊢ 𝑅 Po ∅ | |
| 2 | ral0 3573 | . 2 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) | |
| 3 | df-iso 4365 | . 2 ⊢ (𝑅 Or ∅ ↔ (𝑅 Po ∅ ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) | |
| 4 | 1, 2, 3 | mpbir2an 947 | 1 ⊢ 𝑅 Or ∅ |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 712 ∀wral 2488 ∅c0 3471 class class class wbr 4062 Po wpo 4362 Or wor 4363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-v 2781 df-dif 3179 df-nul 3472 df-po 4364 df-iso 4365 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |