ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  so0 GIF version

Theorem so0 4311
Description: Any relation is a strict ordering of the empty set. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
so0 𝑅 Or ∅

Proof of Theorem so0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 po0 4296 . 2 𝑅 Po ∅
2 ral0 3516 . 2 𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))
3 df-iso 4282 . 2 (𝑅 Or ∅ ↔ (𝑅 Po ∅ ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
41, 2, 3mpbir2an 937 1 𝑅 Or ∅
Colors of variables: wff set class
Syntax hints:  wi 4  wo 703  wral 2448  c0 3414   class class class wbr 3989   Po wpo 4279   Or wor 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-dif 3123  df-nul 3415  df-po 4281  df-iso 4282
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator