ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  so0 GIF version

Theorem so0 4286
Description: Any relation is a strict ordering of the empty set. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
so0 𝑅 Or ∅

Proof of Theorem so0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 po0 4271 . 2 𝑅 Po ∅
2 ral0 3495 . 2 𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))
3 df-iso 4257 . 2 (𝑅 Or ∅ ↔ (𝑅 Po ∅ ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
41, 2, 3mpbir2an 927 1 𝑅 Or ∅
Colors of variables: wff set class
Syntax hints:  wi 4  wo 698  wral 2435  c0 3394   class class class wbr 3965   Po wpo 4254   Or wor 4255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-v 2714  df-dif 3104  df-nul 3395  df-po 4256  df-iso 4257
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator