| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > so0 | GIF version | ||
| Description: Any relation is a strict ordering of the empty set. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| so0 | ⊢ 𝑅 Or ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | po0 4362 | . 2 ⊢ 𝑅 Po ∅ | |
| 2 | ral0 3563 | . 2 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) | |
| 3 | df-iso 4348 | . 2 ⊢ (𝑅 Or ∅ ↔ (𝑅 Po ∅ ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) | |
| 4 | 1, 2, 3 | mpbir2an 945 | 1 ⊢ 𝑅 Or ∅ |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 ∀wral 2485 ∅c0 3461 class class class wbr 4047 Po wpo 4345 Or wor 4346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-dif 3169 df-nul 3462 df-po 4347 df-iso 4348 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |