ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soeq1 GIF version

Theorem soeq1 4293
Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
soeq1 (𝑅 = 𝑆 → (𝑅 Or 𝐴𝑆 Or 𝐴))

Proof of Theorem soeq1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poeq1 4277 . . 3 (𝑅 = 𝑆 → (𝑅 Po 𝐴𝑆 Po 𝐴))
2 breq 3984 . . . . . 6 (𝑅 = 𝑆 → (𝑥𝑅𝑦𝑥𝑆𝑦))
3 breq 3984 . . . . . . 7 (𝑅 = 𝑆 → (𝑥𝑅𝑧𝑥𝑆𝑧))
4 breq 3984 . . . . . . 7 (𝑅 = 𝑆 → (𝑧𝑅𝑦𝑧𝑆𝑦))
53, 4orbi12d 783 . . . . . 6 (𝑅 = 𝑆 → ((𝑥𝑅𝑧𝑧𝑅𝑦) ↔ (𝑥𝑆𝑧𝑧𝑆𝑦)))
62, 5imbi12d 233 . . . . 5 (𝑅 = 𝑆 → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦))))
762ralbidv 2490 . . . 4 (𝑅 = 𝑆 → (∀𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ ∀𝑦𝐴𝑧𝐴 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦))))
87ralbidv 2466 . . 3 (𝑅 = 𝑆 → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦))))
91, 8anbi12d 465 . 2 (𝑅 = 𝑆 → ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))) ↔ (𝑆 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦)))))
10 df-iso 4275 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
11 df-iso 4275 . 2 (𝑆 Or 𝐴 ↔ (𝑆 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑆𝑦 → (𝑥𝑆𝑧𝑧𝑆𝑦))))
129, 10, 113bitr4g 222 1 (𝑅 = 𝑆 → (𝑅 Or 𝐴𝑆 Or 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1343  wral 2444   class class class wbr 3982   Po wpo 4272   Or wor 4273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-cleq 2158  df-clel 2161  df-ral 2449  df-br 3983  df-po 4274  df-iso 4275
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator