| Step | Hyp | Ref
 | Expression | 
| 1 |   | poeq1 4334 | 
. . 3
⊢ (𝑅 = 𝑆 → (𝑅 Po 𝐴 ↔ 𝑆 Po 𝐴)) | 
| 2 |   | breq 4035 | 
. . . . . 6
⊢ (𝑅 = 𝑆 → (𝑥𝑅𝑦 ↔ 𝑥𝑆𝑦)) | 
| 3 |   | breq 4035 | 
. . . . . . 7
⊢ (𝑅 = 𝑆 → (𝑥𝑅𝑧 ↔ 𝑥𝑆𝑧)) | 
| 4 |   | breq 4035 | 
. . . . . . 7
⊢ (𝑅 = 𝑆 → (𝑧𝑅𝑦 ↔ 𝑧𝑆𝑦)) | 
| 5 | 3, 4 | orbi12d 794 | 
. . . . . 6
⊢ (𝑅 = 𝑆 → ((𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦) ↔ (𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦))) | 
| 6 | 2, 5 | imbi12d 234 | 
. . . . 5
⊢ (𝑅 = 𝑆 → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ (𝑥𝑆𝑦 → (𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦)))) | 
| 7 | 6 | 2ralbidv 2521 | 
. . . 4
⊢ (𝑅 = 𝑆 → (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑆𝑦 → (𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦)))) | 
| 8 | 7 | ralbidv 2497 | 
. . 3
⊢ (𝑅 = 𝑆 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑆𝑦 → (𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦)))) | 
| 9 | 1, 8 | anbi12d 473 | 
. 2
⊢ (𝑅 = 𝑆 → ((𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) ↔ (𝑆 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑆𝑦 → (𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦))))) | 
| 10 |   | df-iso 4332 | 
. 2
⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) | 
| 11 |   | df-iso 4332 | 
. 2
⊢ (𝑆 Or 𝐴 ↔ (𝑆 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑆𝑦 → (𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦)))) | 
| 12 | 9, 10, 11 | 3bitr4g 223 | 
1
⊢ (𝑅 = 𝑆 → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐴)) |