| Step | Hyp | Ref
| Expression |
| 1 | | poeq1 4335 |
. . 3
⊢ (𝑅 = 𝑆 → (𝑅 Po 𝐴 ↔ 𝑆 Po 𝐴)) |
| 2 | | breq 4036 |
. . . . . 6
⊢ (𝑅 = 𝑆 → (𝑥𝑅𝑦 ↔ 𝑥𝑆𝑦)) |
| 3 | | breq 4036 |
. . . . . . 7
⊢ (𝑅 = 𝑆 → (𝑥𝑅𝑧 ↔ 𝑥𝑆𝑧)) |
| 4 | | breq 4036 |
. . . . . . 7
⊢ (𝑅 = 𝑆 → (𝑧𝑅𝑦 ↔ 𝑧𝑆𝑦)) |
| 5 | 3, 4 | orbi12d 794 |
. . . . . 6
⊢ (𝑅 = 𝑆 → ((𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦) ↔ (𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦))) |
| 6 | 2, 5 | imbi12d 234 |
. . . . 5
⊢ (𝑅 = 𝑆 → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ (𝑥𝑆𝑦 → (𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦)))) |
| 7 | 6 | 2ralbidv 2521 |
. . . 4
⊢ (𝑅 = 𝑆 → (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑆𝑦 → (𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦)))) |
| 8 | 7 | ralbidv 2497 |
. . 3
⊢ (𝑅 = 𝑆 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑆𝑦 → (𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦)))) |
| 9 | 1, 8 | anbi12d 473 |
. 2
⊢ (𝑅 = 𝑆 → ((𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) ↔ (𝑆 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑆𝑦 → (𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦))))) |
| 10 | | df-iso 4333 |
. 2
⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
| 11 | | df-iso 4333 |
. 2
⊢ (𝑆 Or 𝐴 ↔ (𝑆 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑆𝑦 → (𝑥𝑆𝑧 ∨ 𝑧𝑆𝑦)))) |
| 12 | 9, 10, 11 | 3bitr4g 223 |
1
⊢ (𝑅 = 𝑆 → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐴)) |