ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soeq2 Unicode version

Theorem soeq2 4351
Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
soeq2  |-  ( A  =  B  ->  ( R  Or  A  <->  R  Or  B ) )

Proof of Theorem soeq2
StepHypRef Expression
1 soss 4349 . . . 4  |-  ( A 
C_  B  ->  ( R  Or  B  ->  R  Or  A ) )
2 soss 4349 . . . 4  |-  ( B 
C_  A  ->  ( R  Or  A  ->  R  Or  B ) )
31, 2anim12i 338 . . 3  |-  ( ( A  C_  B  /\  B  C_  A )  -> 
( ( R  Or  B  ->  R  Or  A
)  /\  ( R  Or  A  ->  R  Or  B ) ) )
4 eqss 3198 . . 3  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 dfbi2 388 . . 3  |-  ( ( R  Or  B  <->  R  Or  A )  <->  ( ( R  Or  B  ->  R  Or  A )  /\  ( R  Or  A  ->  R  Or  B ) ) )
63, 4, 53imtr4i 201 . 2  |-  ( A  =  B  ->  ( R  Or  B  <->  R  Or  A ) )
76bicomd 141 1  |-  ( A  =  B  ->  ( R  Or  A  <->  R  Or  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    C_ wss 3157    Or wor 4330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-in 3163  df-ss 3170  df-po 4331  df-iso 4332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator