ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soeq2 Unicode version

Theorem soeq2 4294
Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
soeq2  |-  ( A  =  B  ->  ( R  Or  A  <->  R  Or  B ) )

Proof of Theorem soeq2
StepHypRef Expression
1 soss 4292 . . . 4  |-  ( A 
C_  B  ->  ( R  Or  B  ->  R  Or  A ) )
2 soss 4292 . . . 4  |-  ( B 
C_  A  ->  ( R  Or  A  ->  R  Or  B ) )
31, 2anim12i 336 . . 3  |-  ( ( A  C_  B  /\  B  C_  A )  -> 
( ( R  Or  B  ->  R  Or  A
)  /\  ( R  Or  A  ->  R  Or  B ) ) )
4 eqss 3157 . . 3  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 dfbi2 386 . . 3  |-  ( ( R  Or  B  <->  R  Or  A )  <->  ( ( R  Or  B  ->  R  Or  A )  /\  ( R  Or  A  ->  R  Or  B ) ) )
63, 4, 53imtr4i 200 . 2  |-  ( A  =  B  ->  ( R  Or  B  <->  R  Or  A ) )
76bicomd 140 1  |-  ( A  =  B  ->  ( R  Or  A  <->  R  Or  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    C_ wss 3116    Or wor 4273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-in 3122  df-ss 3129  df-po 4274  df-iso 4275
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator