ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soeq2 Unicode version

Theorem soeq2 4310
Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
soeq2  |-  ( A  =  B  ->  ( R  Or  A  <->  R  Or  B ) )

Proof of Theorem soeq2
StepHypRef Expression
1 soss 4308 . . . 4  |-  ( A 
C_  B  ->  ( R  Or  B  ->  R  Or  A ) )
2 soss 4308 . . . 4  |-  ( B 
C_  A  ->  ( R  Or  A  ->  R  Or  B ) )
31, 2anim12i 338 . . 3  |-  ( ( A  C_  B  /\  B  C_  A )  -> 
( ( R  Or  B  ->  R  Or  A
)  /\  ( R  Or  A  ->  R  Or  B ) ) )
4 eqss 3168 . . 3  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 dfbi2 388 . . 3  |-  ( ( R  Or  B  <->  R  Or  A )  <->  ( ( R  Or  B  ->  R  Or  A )  /\  ( R  Or  A  ->  R  Or  B ) ) )
63, 4, 53imtr4i 201 . 2  |-  ( A  =  B  ->  ( R  Or  B  <->  R  Or  A ) )
76bicomd 141 1  |-  ( A  =  B  ->  ( R  Or  A  <->  R  Or  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    C_ wss 3127    Or wor 4289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-in 3133  df-ss 3140  df-po 4290  df-iso 4291
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator