ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcegf GIF version

Theorem spcegf 2809
Description: Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997.)
Hypotheses
Ref Expression
spcgf.1 𝑥𝐴
spcgf.2 𝑥𝜓
spcgf.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
spcegf (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))

Proof of Theorem spcegf
StepHypRef Expression
1 spcgf.2 . . 3 𝑥𝜓
2 spcgf.1 . . 3 𝑥𝐴
31, 2spcegft 2805 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝑉 → (𝜓 → ∃𝑥𝜑)))
4 spcgf.3 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
53, 4mpg 1439 1 (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wnf 1448  wex 1480  wcel 2136  wnfc 2295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by:  spcegv  2814  rspce  2825  euotd  4232  seq3f1olemstep  10436
  Copyright terms: Public domain W3C validator