ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcegf GIF version

Theorem spcegf 2772
Description: Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997.)
Hypotheses
Ref Expression
spcgf.1 𝑥𝐴
spcgf.2 𝑥𝜓
spcgf.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
spcegf (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))

Proof of Theorem spcegf
StepHypRef Expression
1 spcgf.2 . . 3 𝑥𝜓
2 spcgf.1 . . 3 𝑥𝐴
31, 2spcegft 2768 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝑉 → (𝜓 → ∃𝑥𝜑)))
4 spcgf.3 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
53, 4mpg 1428 1 (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1332  wnf 1437  wex 1469  wcel 1481  wnfc 2269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691
This theorem is referenced by:  spcegv  2777  rspce  2787  euotd  4182  seq3f1olemstep  10303
  Copyright terms: Public domain W3C validator