ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusvnf Unicode version

Theorem eusvnf 4488
Description: Even if  x is free in  A, it is effectively bound when  A ( x ) is single-valued. (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
eusvnf  |-  ( E! y A. x  y  =  A  ->  F/_ x A )
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Proof of Theorem eusvnf
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 euex 2075 . 2  |-  ( E! y A. x  y  =  A  ->  E. y A. x  y  =  A )
2 vex 2766 . . . . . . 7  |-  z  e. 
_V
3 nfcv 2339 . . . . . . . 8  |-  F/_ x
z
4 nfcsb1v 3117 . . . . . . . . 9  |-  F/_ x [_ z  /  x ]_ A
54nfeq2 2351 . . . . . . . 8  |-  F/ x  y  =  [_ z  /  x ]_ A
6 csbeq1a 3093 . . . . . . . . 9  |-  ( x  =  z  ->  A  =  [_ z  /  x ]_ A )
76eqeq2d 2208 . . . . . . . 8  |-  ( x  =  z  ->  (
y  =  A  <->  y  =  [_ z  /  x ]_ A ) )
83, 5, 7spcgf 2846 . . . . . . 7  |-  ( z  e.  _V  ->  ( A. x  y  =  A  ->  y  =  [_ z  /  x ]_ A
) )
92, 8ax-mp 5 . . . . . 6  |-  ( A. x  y  =  A  ->  y  =  [_ z  /  x ]_ A )
10 vex 2766 . . . . . . 7  |-  w  e. 
_V
11 nfcv 2339 . . . . . . . 8  |-  F/_ x w
12 nfcsb1v 3117 . . . . . . . . 9  |-  F/_ x [_ w  /  x ]_ A
1312nfeq2 2351 . . . . . . . 8  |-  F/ x  y  =  [_ w  /  x ]_ A
14 csbeq1a 3093 . . . . . . . . 9  |-  ( x  =  w  ->  A  =  [_ w  /  x ]_ A )
1514eqeq2d 2208 . . . . . . . 8  |-  ( x  =  w  ->  (
y  =  A  <->  y  =  [_ w  /  x ]_ A ) )
1611, 13, 15spcgf 2846 . . . . . . 7  |-  ( w  e.  _V  ->  ( A. x  y  =  A  ->  y  =  [_ w  /  x ]_ A
) )
1710, 16ax-mp 5 . . . . . 6  |-  ( A. x  y  =  A  ->  y  =  [_ w  /  x ]_ A )
189, 17eqtr3d 2231 . . . . 5  |-  ( A. x  y  =  A  ->  [_ z  /  x ]_ A  =  [_ w  /  x ]_ A )
1918alrimivv 1889 . . . 4  |-  ( A. x  y  =  A  ->  A. z A. w [_ z  /  x ]_ A  =  [_ w  /  x ]_ A )
20 sbnfc2 3145 . . . 4  |-  ( F/_ x A  <->  A. z A. w [_ z  /  x ]_ A  =  [_ w  /  x ]_ A )
2119, 20sylibr 134 . . 3  |-  ( A. x  y  =  A  -> 
F/_ x A )
2221exlimiv 1612 . 2  |-  ( E. y A. x  y  =  A  ->  F/_ x A )
231, 22syl 14 1  |-  ( E! y A. x  y  =  A  ->  F/_ x A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362    = wceq 1364   E.wex 1506   E!weu 2045    e. wcel 2167   F/_wnfc 2326   _Vcvv 2763   [_csb 3084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990  df-csb 3085
This theorem is referenced by:  eusvnfb  4489  eusv2i  4490
  Copyright terms: Public domain W3C validator