ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpofvex Unicode version

Theorem mpofvex 6272
Description: Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypothesis
Ref Expression
mpofvex.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
mpofvex  |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X )  ->  ( R F S )  e.  _V )
Distinct variable groups:    x, A, y   
y, B
Allowed substitution hints:    B( x)    C( x, y)    R( x, y)    S( x, y)    F( x, y)    V( x, y)    W( x, y)    X( x, y)

Proof of Theorem mpofvex
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-ov 5928 . 2  |-  ( R F S )  =  ( F `  <. R ,  S >. )
2 elex 2774 . . . . . . . . 9  |-  ( C  e.  V  ->  C  e.  _V )
32alimi 1469 . . . . . . . 8  |-  ( A. y  C  e.  V  ->  A. y  C  e. 
_V )
4 vex 2766 . . . . . . . . 9  |-  z  e. 
_V
5 2ndexg 6235 . . . . . . . . 9  |-  ( z  e.  _V  ->  ( 2nd `  z )  e. 
_V )
6 nfcv 2339 . . . . . . . . . 10  |-  F/_ y
( 2nd `  z
)
7 nfcsb1v 3117 . . . . . . . . . . 11  |-  F/_ y [_ ( 2nd `  z
)  /  y ]_ C
87nfel1 2350 . . . . . . . . . 10  |-  F/ y
[_ ( 2nd `  z
)  /  y ]_ C  e.  _V
9 csbeq1a 3093 . . . . . . . . . . 11  |-  ( y  =  ( 2nd `  z
)  ->  C  =  [_ ( 2nd `  z
)  /  y ]_ C )
109eleq1d 2265 . . . . . . . . . 10  |-  ( y  =  ( 2nd `  z
)  ->  ( C  e.  _V  <->  [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
)
116, 8, 10spcgf 2846 . . . . . . . . 9  |-  ( ( 2nd `  z )  e.  _V  ->  ( A. y  C  e.  _V  ->  [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
)
124, 5, 11mp2b 8 . . . . . . . 8  |-  ( A. y  C  e.  _V  ->  [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
133, 12syl 14 . . . . . . 7  |-  ( A. y  C  e.  V  ->  [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
1413alimi 1469 . . . . . 6  |-  ( A. x A. y  C  e.  V  ->  A. x [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
15 1stexg 6234 . . . . . . 7  |-  ( z  e.  _V  ->  ( 1st `  z )  e. 
_V )
16 nfcv 2339 . . . . . . . 8  |-  F/_ x
( 1st `  z
)
17 nfcsb1v 3117 . . . . . . . . 9  |-  F/_ x [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C
1817nfel1 2350 . . . . . . . 8  |-  F/ x [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V
19 csbeq1a 3093 . . . . . . . . 9  |-  ( x  =  ( 1st `  z
)  ->  [_ ( 2nd `  z )  /  y ]_ C  =  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
2019eleq1d 2265 . . . . . . . 8  |-  ( x  =  ( 1st `  z
)  ->  ( [_ ( 2nd `  z )  /  y ]_ C  e.  _V  <->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
)
2116, 18, 20spcgf 2846 . . . . . . 7  |-  ( ( 1st `  z )  e.  _V  ->  ( A. x [_ ( 2nd `  z )  /  y ]_ C  e.  _V  ->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
)
224, 15, 21mp2b 8 . . . . . 6  |-  ( A. x [_ ( 2nd `  z
)  /  y ]_ C  e.  _V  ->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
2314, 22syl 14 . . . . 5  |-  ( A. x A. y  C  e.  V  ->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
2423alrimiv 1888 . . . 4  |-  ( A. x A. y  C  e.  V  ->  A. z [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
25243ad2ant1 1020 . . 3  |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X )  ->  A. z [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C  e.  _V )
26 opexg 4262 . . . 4  |-  ( ( R  e.  W  /\  S  e.  X )  -> 
<. R ,  S >.  e. 
_V )
27263adant1 1017 . . 3  |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X )  -> 
<. R ,  S >.  e. 
_V )
28 mpofvex.1 . . . . 5  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
29 mpomptsx 6264 . . . . 5  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e. 
U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
3028, 29eqtri 2217 . . . 4  |-  F  =  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
3130mptfvex 5650 . . 3  |-  ( ( A. z [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C  e.  _V  /\ 
<. R ,  S >.  e. 
_V )  ->  ( F `  <. R ,  S >. )  e.  _V )
3225, 27, 31syl2anc 411 . 2  |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X )  ->  ( F `  <. R ,  S >. )  e.  _V )
331, 32eqeltrid 2283 1  |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X )  ->  ( R F S )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980   A.wal 1362    = wceq 1364    e. wcel 2167   _Vcvv 2763   [_csb 3084   {csn 3623   <.cop 3626   U_ciun 3917    |-> cmpt 4095    X. cxp 4662   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   1stc1st 6205   2ndc2nd 6206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fo 5265  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208
This theorem is referenced by:  mpofvexi  6273  oaexg  6515  omexg  6518  oeiexg  6520  rhmex  13789
  Copyright terms: Public domain W3C validator