| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpofvex | Unicode version | ||
| Description: Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.) |
| Ref | Expression |
|---|---|
| mpofvex.1 |
|
| Ref | Expression |
|---|---|
| mpofvex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5997 |
. 2
| |
| 2 | elex 2811 |
. . . . . . . . 9
| |
| 3 | 2 | alimi 1501 |
. . . . . . . 8
|
| 4 | vex 2802 |
. . . . . . . . 9
| |
| 5 | 2ndexg 6304 |
. . . . . . . . 9
| |
| 6 | nfcv 2372 |
. . . . . . . . . 10
| |
| 7 | nfcsb1v 3157 |
. . . . . . . . . . 11
| |
| 8 | 7 | nfel1 2383 |
. . . . . . . . . 10
|
| 9 | csbeq1a 3133 |
. . . . . . . . . . 11
| |
| 10 | 9 | eleq1d 2298 |
. . . . . . . . . 10
|
| 11 | 6, 8, 10 | spcgf 2885 |
. . . . . . . . 9
|
| 12 | 4, 5, 11 | mp2b 8 |
. . . . . . . 8
|
| 13 | 3, 12 | syl 14 |
. . . . . . 7
|
| 14 | 13 | alimi 1501 |
. . . . . 6
|
| 15 | 1stexg 6303 |
. . . . . . 7
| |
| 16 | nfcv 2372 |
. . . . . . . 8
| |
| 17 | nfcsb1v 3157 |
. . . . . . . . 9
| |
| 18 | 17 | nfel1 2383 |
. . . . . . . 8
|
| 19 | csbeq1a 3133 |
. . . . . . . . 9
| |
| 20 | 19 | eleq1d 2298 |
. . . . . . . 8
|
| 21 | 16, 18, 20 | spcgf 2885 |
. . . . . . 7
|
| 22 | 4, 15, 21 | mp2b 8 |
. . . . . 6
|
| 23 | 14, 22 | syl 14 |
. . . . 5
|
| 24 | 23 | alrimiv 1920 |
. . . 4
|
| 25 | 24 | 3ad2ant1 1042 |
. . 3
|
| 26 | opexg 4313 |
. . . 4
| |
| 27 | 26 | 3adant1 1039 |
. . 3
|
| 28 | mpofvex.1 |
. . . . 5
| |
| 29 | mpomptsx 6333 |
. . . . 5
| |
| 30 | 28, 29 | eqtri 2250 |
. . . 4
|
| 31 | 30 | mptfvex 5713 |
. . 3
|
| 32 | 25, 27, 31 | syl2anc 411 |
. 2
|
| 33 | 1, 32 | eqeltrid 2316 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fo 5320 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 |
| This theorem is referenced by: mpofvexi 6342 oaexg 6584 omexg 6587 oeiexg 6589 rhmex 14106 |
| Copyright terms: Public domain | W3C validator |