Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpofvex | Unicode version |
Description: Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.) |
Ref | Expression |
---|---|
fmpo.1 |
Ref | Expression |
---|---|
mpofvex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5845 | . 2 | |
2 | elex 2737 | . . . . . . . . 9 | |
3 | 2 | alimi 1443 | . . . . . . . 8 |
4 | vex 2729 | . . . . . . . . 9 | |
5 | 2ndexg 6136 | . . . . . . . . 9 | |
6 | nfcv 2308 | . . . . . . . . . 10 | |
7 | nfcsb1v 3078 | . . . . . . . . . . 11 | |
8 | 7 | nfel1 2319 | . . . . . . . . . 10 |
9 | csbeq1a 3054 | . . . . . . . . . . 11 | |
10 | 9 | eleq1d 2235 | . . . . . . . . . 10 |
11 | 6, 8, 10 | spcgf 2808 | . . . . . . . . 9 |
12 | 4, 5, 11 | mp2b 8 | . . . . . . . 8 |
13 | 3, 12 | syl 14 | . . . . . . 7 |
14 | 13 | alimi 1443 | . . . . . 6 |
15 | 1stexg 6135 | . . . . . . 7 | |
16 | nfcv 2308 | . . . . . . . 8 | |
17 | nfcsb1v 3078 | . . . . . . . . 9 | |
18 | 17 | nfel1 2319 | . . . . . . . 8 |
19 | csbeq1a 3054 | . . . . . . . . 9 | |
20 | 19 | eleq1d 2235 | . . . . . . . 8 |
21 | 16, 18, 20 | spcgf 2808 | . . . . . . 7 |
22 | 4, 15, 21 | mp2b 8 | . . . . . 6 |
23 | 14, 22 | syl 14 | . . . . 5 |
24 | 23 | alrimiv 1862 | . . . 4 |
25 | 24 | 3ad2ant1 1008 | . . 3 |
26 | opexg 4206 | . . . 4 | |
27 | 26 | 3adant1 1005 | . . 3 |
28 | fmpo.1 | . . . . 5 | |
29 | mpomptsx 6165 | . . . . 5 | |
30 | 28, 29 | eqtri 2186 | . . . 4 |
31 | 30 | mptfvex 5571 | . . 3 |
32 | 25, 27, 31 | syl2anc 409 | . 2 |
33 | 1, 32 | eqeltrid 2253 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 968 wal 1341 wceq 1343 wcel 2136 cvv 2726 csb 3045 csn 3576 cop 3579 ciun 3866 cmpt 4043 cxp 4602 cfv 5188 (class class class)co 5842 cmpo 5844 c1st 6106 c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: mpofvexi 6174 oaexg 6416 omexg 6419 oeiexg 6421 |
Copyright terms: Public domain | W3C validator |