| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpofvex | Unicode version | ||
| Description: Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.) |
| Ref | Expression |
|---|---|
| mpofvex.1 |
|
| Ref | Expression |
|---|---|
| mpofvex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5954 |
. 2
| |
| 2 | elex 2784 |
. . . . . . . . 9
| |
| 3 | 2 | alimi 1479 |
. . . . . . . 8
|
| 4 | vex 2776 |
. . . . . . . . 9
| |
| 5 | 2ndexg 6261 |
. . . . . . . . 9
| |
| 6 | nfcv 2349 |
. . . . . . . . . 10
| |
| 7 | nfcsb1v 3127 |
. . . . . . . . . . 11
| |
| 8 | 7 | nfel1 2360 |
. . . . . . . . . 10
|
| 9 | csbeq1a 3103 |
. . . . . . . . . . 11
| |
| 10 | 9 | eleq1d 2275 |
. . . . . . . . . 10
|
| 11 | 6, 8, 10 | spcgf 2856 |
. . . . . . . . 9
|
| 12 | 4, 5, 11 | mp2b 8 |
. . . . . . . 8
|
| 13 | 3, 12 | syl 14 |
. . . . . . 7
|
| 14 | 13 | alimi 1479 |
. . . . . 6
|
| 15 | 1stexg 6260 |
. . . . . . 7
| |
| 16 | nfcv 2349 |
. . . . . . . 8
| |
| 17 | nfcsb1v 3127 |
. . . . . . . . 9
| |
| 18 | 17 | nfel1 2360 |
. . . . . . . 8
|
| 19 | csbeq1a 3103 |
. . . . . . . . 9
| |
| 20 | 19 | eleq1d 2275 |
. . . . . . . 8
|
| 21 | 16, 18, 20 | spcgf 2856 |
. . . . . . 7
|
| 22 | 4, 15, 21 | mp2b 8 |
. . . . . 6
|
| 23 | 14, 22 | syl 14 |
. . . . 5
|
| 24 | 23 | alrimiv 1898 |
. . . 4
|
| 25 | 24 | 3ad2ant1 1021 |
. . 3
|
| 26 | opexg 4276 |
. . . 4
| |
| 27 | 26 | 3adant1 1018 |
. . 3
|
| 28 | mpofvex.1 |
. . . . 5
| |
| 29 | mpomptsx 6290 |
. . . . 5
| |
| 30 | 28, 29 | eqtri 2227 |
. . . 4
|
| 31 | 30 | mptfvex 5672 |
. . 3
|
| 32 | 25, 27, 31 | syl2anc 411 |
. 2
|
| 33 | 1, 32 | eqeltrid 2293 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fo 5282 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 |
| This theorem is referenced by: mpofvexi 6299 oaexg 6541 omexg 6544 oeiexg 6546 rhmex 13963 |
| Copyright terms: Public domain | W3C validator |