Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpofvex | Unicode version |
Description: Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.) |
Ref | Expression |
---|---|
fmpo.1 |
Ref | Expression |
---|---|
mpofvex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5856 | . 2 | |
2 | elex 2741 | . . . . . . . . 9 | |
3 | 2 | alimi 1448 | . . . . . . . 8 |
4 | vex 2733 | . . . . . . . . 9 | |
5 | 2ndexg 6147 | . . . . . . . . 9 | |
6 | nfcv 2312 | . . . . . . . . . 10 | |
7 | nfcsb1v 3082 | . . . . . . . . . . 11 | |
8 | 7 | nfel1 2323 | . . . . . . . . . 10 |
9 | csbeq1a 3058 | . . . . . . . . . . 11 | |
10 | 9 | eleq1d 2239 | . . . . . . . . . 10 |
11 | 6, 8, 10 | spcgf 2812 | . . . . . . . . 9 |
12 | 4, 5, 11 | mp2b 8 | . . . . . . . 8 |
13 | 3, 12 | syl 14 | . . . . . . 7 |
14 | 13 | alimi 1448 | . . . . . 6 |
15 | 1stexg 6146 | . . . . . . 7 | |
16 | nfcv 2312 | . . . . . . . 8 | |
17 | nfcsb1v 3082 | . . . . . . . . 9 | |
18 | 17 | nfel1 2323 | . . . . . . . 8 |
19 | csbeq1a 3058 | . . . . . . . . 9 | |
20 | 19 | eleq1d 2239 | . . . . . . . 8 |
21 | 16, 18, 20 | spcgf 2812 | . . . . . . 7 |
22 | 4, 15, 21 | mp2b 8 | . . . . . 6 |
23 | 14, 22 | syl 14 | . . . . 5 |
24 | 23 | alrimiv 1867 | . . . 4 |
25 | 24 | 3ad2ant1 1013 | . . 3 |
26 | opexg 4213 | . . . 4 | |
27 | 26 | 3adant1 1010 | . . 3 |
28 | fmpo.1 | . . . . 5 | |
29 | mpomptsx 6176 | . . . . 5 | |
30 | 28, 29 | eqtri 2191 | . . . 4 |
31 | 30 | mptfvex 5581 | . . 3 |
32 | 25, 27, 31 | syl2anc 409 | . 2 |
33 | 1, 32 | eqeltrid 2257 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 973 wal 1346 wceq 1348 wcel 2141 cvv 2730 csb 3049 csn 3583 cop 3586 ciun 3873 cmpt 4050 cxp 4609 cfv 5198 (class class class)co 5853 cmpo 5855 c1st 6117 c2nd 6118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fo 5204 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 |
This theorem is referenced by: mpofvexi 6185 oaexg 6427 omexg 6430 oeiexg 6432 |
Copyright terms: Public domain | W3C validator |