| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mpofvex | Unicode version | ||
| Description: Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.) | 
| Ref | Expression | 
|---|---|
| mpofvex.1 | 
 | 
| Ref | Expression | 
|---|---|
| mpofvex | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ov 5925 | 
. 2
 | |
| 2 | elex 2774 | 
. . . . . . . . 9
 | |
| 3 | 2 | alimi 1469 | 
. . . . . . . 8
 | 
| 4 | vex 2766 | 
. . . . . . . . 9
 | |
| 5 | 2ndexg 6226 | 
. . . . . . . . 9
 | |
| 6 | nfcv 2339 | 
. . . . . . . . . 10
 | |
| 7 | nfcsb1v 3117 | 
. . . . . . . . . . 11
 | |
| 8 | 7 | nfel1 2350 | 
. . . . . . . . . 10
 | 
| 9 | csbeq1a 3093 | 
. . . . . . . . . . 11
 | |
| 10 | 9 | eleq1d 2265 | 
. . . . . . . . . 10
 | 
| 11 | 6, 8, 10 | spcgf 2846 | 
. . . . . . . . 9
 | 
| 12 | 4, 5, 11 | mp2b 8 | 
. . . . . . . 8
 | 
| 13 | 3, 12 | syl 14 | 
. . . . . . 7
 | 
| 14 | 13 | alimi 1469 | 
. . . . . 6
 | 
| 15 | 1stexg 6225 | 
. . . . . . 7
 | |
| 16 | nfcv 2339 | 
. . . . . . . 8
 | |
| 17 | nfcsb1v 3117 | 
. . . . . . . . 9
 | |
| 18 | 17 | nfel1 2350 | 
. . . . . . . 8
 | 
| 19 | csbeq1a 3093 | 
. . . . . . . . 9
 | |
| 20 | 19 | eleq1d 2265 | 
. . . . . . . 8
 | 
| 21 | 16, 18, 20 | spcgf 2846 | 
. . . . . . 7
 | 
| 22 | 4, 15, 21 | mp2b 8 | 
. . . . . 6
 | 
| 23 | 14, 22 | syl 14 | 
. . . . 5
 | 
| 24 | 23 | alrimiv 1888 | 
. . . 4
 | 
| 25 | 24 | 3ad2ant1 1020 | 
. . 3
 | 
| 26 | opexg 4261 | 
. . . 4
 | |
| 27 | 26 | 3adant1 1017 | 
. . 3
 | 
| 28 | mpofvex.1 | 
. . . . 5
 | |
| 29 | mpomptsx 6255 | 
. . . . 5
 | |
| 30 | 28, 29 | eqtri 2217 | 
. . . 4
 | 
| 31 | 30 | mptfvex 5647 | 
. . 3
 | 
| 32 | 25, 27, 31 | syl2anc 411 | 
. 2
 | 
| 33 | 1, 32 | eqeltrid 2283 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fo 5264 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 | 
| This theorem is referenced by: mpofvexi 6264 oaexg 6506 omexg 6509 oeiexg 6511 rhmex 13713 | 
| Copyright terms: Public domain | W3C validator |