ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpofvex Unicode version

Theorem mpofvex 6204
Description: Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypothesis
Ref Expression
fmpo.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
mpofvex  |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X )  ->  ( R F S )  e.  _V )
Distinct variable groups:    x, A, y   
x, B, y
Allowed substitution hints:    C( x, y)    R( x, y)    S( x, y)    F( x, y)    V( x, y)    W( x, y)    X( x, y)

Proof of Theorem mpofvex
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-ov 5878 . 2  |-  ( R F S )  =  ( F `  <. R ,  S >. )
2 elex 2749 . . . . . . . . 9  |-  ( C  e.  V  ->  C  e.  _V )
32alimi 1455 . . . . . . . 8  |-  ( A. y  C  e.  V  ->  A. y  C  e. 
_V )
4 vex 2741 . . . . . . . . 9  |-  z  e. 
_V
5 2ndexg 6169 . . . . . . . . 9  |-  ( z  e.  _V  ->  ( 2nd `  z )  e. 
_V )
6 nfcv 2319 . . . . . . . . . 10  |-  F/_ y
( 2nd `  z
)
7 nfcsb1v 3091 . . . . . . . . . . 11  |-  F/_ y [_ ( 2nd `  z
)  /  y ]_ C
87nfel1 2330 . . . . . . . . . 10  |-  F/ y
[_ ( 2nd `  z
)  /  y ]_ C  e.  _V
9 csbeq1a 3067 . . . . . . . . . . 11  |-  ( y  =  ( 2nd `  z
)  ->  C  =  [_ ( 2nd `  z
)  /  y ]_ C )
109eleq1d 2246 . . . . . . . . . 10  |-  ( y  =  ( 2nd `  z
)  ->  ( C  e.  _V  <->  [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
)
116, 8, 10spcgf 2820 . . . . . . . . 9  |-  ( ( 2nd `  z )  e.  _V  ->  ( A. y  C  e.  _V  ->  [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
)
124, 5, 11mp2b 8 . . . . . . . 8  |-  ( A. y  C  e.  _V  ->  [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
133, 12syl 14 . . . . . . 7  |-  ( A. y  C  e.  V  ->  [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
1413alimi 1455 . . . . . 6  |-  ( A. x A. y  C  e.  V  ->  A. x [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
15 1stexg 6168 . . . . . . 7  |-  ( z  e.  _V  ->  ( 1st `  z )  e. 
_V )
16 nfcv 2319 . . . . . . . 8  |-  F/_ x
( 1st `  z
)
17 nfcsb1v 3091 . . . . . . . . 9  |-  F/_ x [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C
1817nfel1 2330 . . . . . . . 8  |-  F/ x [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V
19 csbeq1a 3067 . . . . . . . . 9  |-  ( x  =  ( 1st `  z
)  ->  [_ ( 2nd `  z )  /  y ]_ C  =  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
2019eleq1d 2246 . . . . . . . 8  |-  ( x  =  ( 1st `  z
)  ->  ( [_ ( 2nd `  z )  /  y ]_ C  e.  _V  <->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
)
2116, 18, 20spcgf 2820 . . . . . . 7  |-  ( ( 1st `  z )  e.  _V  ->  ( A. x [_ ( 2nd `  z )  /  y ]_ C  e.  _V  ->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
)
224, 15, 21mp2b 8 . . . . . 6  |-  ( A. x [_ ( 2nd `  z
)  /  y ]_ C  e.  _V  ->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
2314, 22syl 14 . . . . 5  |-  ( A. x A. y  C  e.  V  ->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
2423alrimiv 1874 . . . 4  |-  ( A. x A. y  C  e.  V  ->  A. z [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
25243ad2ant1 1018 . . 3  |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X )  ->  A. z [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C  e.  _V )
26 opexg 4229 . . . 4  |-  ( ( R  e.  W  /\  S  e.  X )  -> 
<. R ,  S >.  e. 
_V )
27263adant1 1015 . . 3  |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X )  -> 
<. R ,  S >.  e. 
_V )
28 fmpo.1 . . . . 5  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
29 mpomptsx 6198 . . . . 5  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e. 
U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
3028, 29eqtri 2198 . . . 4  |-  F  =  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
3130mptfvex 5602 . . 3  |-  ( ( A. z [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C  e.  _V  /\ 
<. R ,  S >.  e. 
_V )  ->  ( F `  <. R ,  S >. )  e.  _V )
3225, 27, 31syl2anc 411 . 2  |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X )  ->  ( F `  <. R ,  S >. )  e.  _V )
331, 32eqeltrid 2264 1  |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X )  ->  ( R F S )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978   A.wal 1351    = wceq 1353    e. wcel 2148   _Vcvv 2738   [_csb 3058   {csn 3593   <.cop 3596   U_ciun 3887    |-> cmpt 4065    X. cxp 4625   ` cfv 5217  (class class class)co 5875    e. cmpo 5877   1stc1st 6139   2ndc2nd 6140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fo 5223  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142
This theorem is referenced by:  mpofvexi  6207  oaexg  6449  omexg  6452  oeiexg  6454
  Copyright terms: Public domain W3C validator