ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpofvex Unicode version

Theorem mpofvex 6101
Description: Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypothesis
Ref Expression
fmpo.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
mpofvex  |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X )  ->  ( R F S )  e.  _V )
Distinct variable groups:    x, A, y   
x, B, y
Allowed substitution hints:    C( x, y)    R( x, y)    S( x, y)    F( x, y)    V( x, y)    W( x, y)    X( x, y)

Proof of Theorem mpofvex
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-ov 5777 . 2  |-  ( R F S )  =  ( F `  <. R ,  S >. )
2 elex 2697 . . . . . . . . 9  |-  ( C  e.  V  ->  C  e.  _V )
32alimi 1431 . . . . . . . 8  |-  ( A. y  C  e.  V  ->  A. y  C  e. 
_V )
4 vex 2689 . . . . . . . . 9  |-  z  e. 
_V
5 2ndexg 6066 . . . . . . . . 9  |-  ( z  e.  _V  ->  ( 2nd `  z )  e. 
_V )
6 nfcv 2281 . . . . . . . . . 10  |-  F/_ y
( 2nd `  z
)
7 nfcsb1v 3035 . . . . . . . . . . 11  |-  F/_ y [_ ( 2nd `  z
)  /  y ]_ C
87nfel1 2292 . . . . . . . . . 10  |-  F/ y
[_ ( 2nd `  z
)  /  y ]_ C  e.  _V
9 csbeq1a 3012 . . . . . . . . . . 11  |-  ( y  =  ( 2nd `  z
)  ->  C  =  [_ ( 2nd `  z
)  /  y ]_ C )
109eleq1d 2208 . . . . . . . . . 10  |-  ( y  =  ( 2nd `  z
)  ->  ( C  e.  _V  <->  [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
)
116, 8, 10spcgf 2768 . . . . . . . . 9  |-  ( ( 2nd `  z )  e.  _V  ->  ( A. y  C  e.  _V  ->  [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
)
124, 5, 11mp2b 8 . . . . . . . 8  |-  ( A. y  C  e.  _V  ->  [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
133, 12syl 14 . . . . . . 7  |-  ( A. y  C  e.  V  ->  [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
1413alimi 1431 . . . . . 6  |-  ( A. x A. y  C  e.  V  ->  A. x [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
15 1stexg 6065 . . . . . . 7  |-  ( z  e.  _V  ->  ( 1st `  z )  e. 
_V )
16 nfcv 2281 . . . . . . . 8  |-  F/_ x
( 1st `  z
)
17 nfcsb1v 3035 . . . . . . . . 9  |-  F/_ x [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C
1817nfel1 2292 . . . . . . . 8  |-  F/ x [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V
19 csbeq1a 3012 . . . . . . . . 9  |-  ( x  =  ( 1st `  z
)  ->  [_ ( 2nd `  z )  /  y ]_ C  =  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
2019eleq1d 2208 . . . . . . . 8  |-  ( x  =  ( 1st `  z
)  ->  ( [_ ( 2nd `  z )  /  y ]_ C  e.  _V  <->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
)
2116, 18, 20spcgf 2768 . . . . . . 7  |-  ( ( 1st `  z )  e.  _V  ->  ( A. x [_ ( 2nd `  z )  /  y ]_ C  e.  _V  ->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
)
224, 15, 21mp2b 8 . . . . . 6  |-  ( A. x [_ ( 2nd `  z
)  /  y ]_ C  e.  _V  ->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
2314, 22syl 14 . . . . 5  |-  ( A. x A. y  C  e.  V  ->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
2423alrimiv 1846 . . . 4  |-  ( A. x A. y  C  e.  V  ->  A. z [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  e.  _V )
25243ad2ant1 1002 . . 3  |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X )  ->  A. z [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C  e.  _V )
26 opexg 4150 . . . 4  |-  ( ( R  e.  W  /\  S  e.  X )  -> 
<. R ,  S >.  e. 
_V )
27263adant1 999 . . 3  |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X )  -> 
<. R ,  S >.  e. 
_V )
28 fmpo.1 . . . . 5  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
29 mpomptsx 6095 . . . . 5  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e. 
U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
3028, 29eqtri 2160 . . . 4  |-  F  =  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
3130mptfvex 5506 . . 3  |-  ( ( A. z [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C  e.  _V  /\ 
<. R ,  S >.  e. 
_V )  ->  ( F `  <. R ,  S >. )  e.  _V )
3225, 27, 31syl2anc 408 . 2  |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X )  ->  ( F `  <. R ,  S >. )  e.  _V )
331, 32eqeltrid 2226 1  |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X )  ->  ( R F S )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 962   A.wal 1329    = wceq 1331    e. wcel 1480   _Vcvv 2686   [_csb 3003   {csn 3527   <.cop 3530   U_ciun 3813    |-> cmpt 3989    X. cxp 4537   ` cfv 5123  (class class class)co 5774    e. cmpo 5776   1stc1st 6036   2ndc2nd 6037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fo 5129  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039
This theorem is referenced by:  mpofvexi  6104  oaexg  6344  omexg  6347  oeiexg  6349
  Copyright terms: Public domain W3C validator