ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spesbc GIF version

Theorem spesbc 3115
Description: Existence form of spsbc 3040. (Contributed by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
spesbc ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑)

Proof of Theorem spesbc
StepHypRef Expression
1 sbcex 3037 . . 3 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
2 rspesbca 3114 . . 3 ((𝐴 ∈ V ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ V 𝜑)
31, 2mpancom 422 . 2 ([𝐴 / 𝑥]𝜑 → ∃𝑥 ∈ V 𝜑)
4 rexv 2818 . 2 (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑)
53, 4sylib 122 1 ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1538  wcel 2200  wrex 2509  Vcvv 2799  [wsbc 3028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-sbc 3029
This theorem is referenced by:  spesbcd  3116  opelopabsb  4347
  Copyright terms: Public domain W3C validator