Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelopabsb | Unicode version |
Description: The law of concretion in terms of substitutions. (Contributed by NM, 30-Sep-2002.) (Revised by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
opelopabsb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopab 4243 | . . . 4 | |
2 | simpl 108 | . . . . . . . 8 | |
3 | 2 | eqcomd 2176 | . . . . . . 7 |
4 | vex 2733 | . . . . . . . 8 | |
5 | vex 2733 | . . . . . . . 8 | |
6 | 4, 5 | opth 4222 | . . . . . . 7 |
7 | 3, 6 | sylib 121 | . . . . . 6 |
8 | 7 | 2eximi 1594 | . . . . 5 |
9 | eeanv 1925 | . . . . . 6 | |
10 | isset 2736 | . . . . . . 7 | |
11 | isset 2736 | . . . . . . 7 | |
12 | 10, 11 | anbi12i 457 | . . . . . 6 |
13 | 9, 12 | bitr4i 186 | . . . . 5 |
14 | 8, 13 | sylib 121 | . . . 4 |
15 | 1, 14 | sylbi 120 | . . 3 |
16 | nfv 1521 | . . . 4 | |
17 | nfv 1521 | . . . 4 | |
18 | nfs1v 1932 | . . . 4 | |
19 | nfs1v 1932 | . . . . 5 | |
20 | 19 | nfsbxy 1935 | . . . 4 |
21 | sbequ12 1764 | . . . . 5 | |
22 | sbequ12 1764 | . . . . 5 | |
23 | 21, 22 | sylan9bbr 460 | . . . 4 |
24 | 16, 17, 18, 20, 23 | cbvopab 4060 | . . 3 |
25 | 15, 24 | eleq2s 2265 | . 2 |
26 | sbcex 2963 | . . 3 | |
27 | spesbc 3040 | . . . 4 | |
28 | sbcex 2963 | . . . . 5 | |
29 | 28 | exlimiv 1591 | . . . 4 |
30 | 27, 29 | syl 14 | . . 3 |
31 | 26, 30 | jca 304 | . 2 |
32 | opeq1 3765 | . . . . 5 | |
33 | 32 | eleq1d 2239 | . . . 4 |
34 | dfsbcq2 2958 | . . . 4 | |
35 | 33, 34 | bibi12d 234 | . . 3 |
36 | opeq2 3766 | . . . . 5 | |
37 | 36 | eleq1d 2239 | . . . 4 |
38 | dfsbcq2 2958 | . . . . 5 | |
39 | 38 | sbcbidv 3013 | . . . 4 |
40 | 37, 39 | bibi12d 234 | . . 3 |
41 | nfopab1 4058 | . . . . . 6 | |
42 | 41 | nfel2 2325 | . . . . 5 |
43 | nfs1v 1932 | . . . . 5 | |
44 | 42, 43 | nfbi 1582 | . . . 4 |
45 | opeq1 3765 | . . . . . 6 | |
46 | 45 | eleq1d 2239 | . . . . 5 |
47 | sbequ12 1764 | . . . . 5 | |
48 | 46, 47 | bibi12d 234 | . . . 4 |
49 | nfopab2 4059 | . . . . . . 7 | |
50 | 49 | nfel2 2325 | . . . . . 6 |
51 | nfs1v 1932 | . . . . . 6 | |
52 | 50, 51 | nfbi 1582 | . . . . 5 |
53 | opeq2 3766 | . . . . . . 7 | |
54 | 53 | eleq1d 2239 | . . . . . 6 |
55 | sbequ12 1764 | . . . . . 6 | |
56 | 54, 55 | bibi12d 234 | . . . . 5 |
57 | opabid 4242 | . . . . 5 | |
58 | 52, 56, 57 | chvar 1750 | . . . 4 |
59 | 44, 48, 58 | chvar 1750 | . . 3 |
60 | 35, 40, 59 | vtocl2g 2794 | . 2 |
61 | 25, 31, 60 | pm5.21nii 699 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1348 wex 1485 wsb 1755 wcel 2141 cvv 2730 wsbc 2955 cop 3586 copab 4049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 |
This theorem is referenced by: brabsb 4246 opelopabaf 4258 opelopabf 4259 difopab 4744 isarep1 5284 |
Copyright terms: Public domain | W3C validator |