| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelopabsb | Unicode version | ||
| Description: The law of concretion in terms of substitutions. (Contributed by NM, 30-Sep-2002.) (Revised by Mario Carneiro, 18-Nov-2016.) |
| Ref | Expression |
|---|---|
| opelopabsb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elopab 4293 |
. . . 4
| |
| 2 | simpl 109 |
. . . . . . . 8
| |
| 3 | 2 | eqcomd 2202 |
. . . . . . 7
|
| 4 | vex 2766 |
. . . . . . . 8
| |
| 5 | vex 2766 |
. . . . . . . 8
| |
| 6 | 4, 5 | opth 4271 |
. . . . . . 7
|
| 7 | 3, 6 | sylib 122 |
. . . . . 6
|
| 8 | 7 | 2eximi 1615 |
. . . . 5
|
| 9 | eeanv 1951 |
. . . . . 6
| |
| 10 | isset 2769 |
. . . . . . 7
| |
| 11 | isset 2769 |
. . . . . . 7
| |
| 12 | 10, 11 | anbi12i 460 |
. . . . . 6
|
| 13 | 9, 12 | bitr4i 187 |
. . . . 5
|
| 14 | 8, 13 | sylib 122 |
. . . 4
|
| 15 | 1, 14 | sylbi 121 |
. . 3
|
| 16 | nfv 1542 |
. . . 4
| |
| 17 | nfv 1542 |
. . . 4
| |
| 18 | nfs1v 1958 |
. . . 4
| |
| 19 | nfs1v 1958 |
. . . . 5
| |
| 20 | 19 | nfsbxy 1961 |
. . . 4
|
| 21 | sbequ12 1785 |
. . . . 5
| |
| 22 | sbequ12 1785 |
. . . . 5
| |
| 23 | 21, 22 | sylan9bbr 463 |
. . . 4
|
| 24 | 16, 17, 18, 20, 23 | cbvopab 4105 |
. . 3
|
| 25 | 15, 24 | eleq2s 2291 |
. 2
|
| 26 | sbcex 2998 |
. . 3
| |
| 27 | spesbc 3075 |
. . . 4
| |
| 28 | sbcex 2998 |
. . . . 5
| |
| 29 | 28 | exlimiv 1612 |
. . . 4
|
| 30 | 27, 29 | syl 14 |
. . 3
|
| 31 | 26, 30 | jca 306 |
. 2
|
| 32 | opeq1 3809 |
. . . . 5
| |
| 33 | 32 | eleq1d 2265 |
. . . 4
|
| 34 | dfsbcq2 2992 |
. . . 4
| |
| 35 | 33, 34 | bibi12d 235 |
. . 3
|
| 36 | opeq2 3810 |
. . . . 5
| |
| 37 | 36 | eleq1d 2265 |
. . . 4
|
| 38 | dfsbcq2 2992 |
. . . . 5
| |
| 39 | 38 | sbcbidv 3048 |
. . . 4
|
| 40 | 37, 39 | bibi12d 235 |
. . 3
|
| 41 | nfopab1 4103 |
. . . . . 6
| |
| 42 | 41 | nfel2 2352 |
. . . . 5
|
| 43 | nfs1v 1958 |
. . . . 5
| |
| 44 | 42, 43 | nfbi 1603 |
. . . 4
|
| 45 | opeq1 3809 |
. . . . . 6
| |
| 46 | 45 | eleq1d 2265 |
. . . . 5
|
| 47 | sbequ12 1785 |
. . . . 5
| |
| 48 | 46, 47 | bibi12d 235 |
. . . 4
|
| 49 | nfopab2 4104 |
. . . . . . 7
| |
| 50 | 49 | nfel2 2352 |
. . . . . 6
|
| 51 | nfs1v 1958 |
. . . . . 6
| |
| 52 | 50, 51 | nfbi 1603 |
. . . . 5
|
| 53 | opeq2 3810 |
. . . . . . 7
| |
| 54 | 53 | eleq1d 2265 |
. . . . . 6
|
| 55 | sbequ12 1785 |
. . . . . 6
| |
| 56 | 54, 55 | bibi12d 235 |
. . . . 5
|
| 57 | opabid 4291 |
. . . . 5
| |
| 58 | 52, 56, 57 | chvar 1771 |
. . . 4
|
| 59 | 44, 48, 58 | chvar 1771 |
. . 3
|
| 60 | 35, 40, 59 | vtocl2g 2828 |
. 2
|
| 61 | 25, 31, 60 | pm5.21nii 705 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-opab 4096 |
| This theorem is referenced by: brabsb 4296 opelopabgf 4305 opelopabaf 4309 opelopabf 4310 difopab 4800 isarep1 5345 |
| Copyright terms: Public domain | W3C validator |