ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2rabi Unicode version

Theorem ss2rabi 3224
Description: Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999.)
Hypothesis
Ref Expression
ss2rabi.1  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
ss2rabi  |-  { x  e.  A  |  ph }  C_ 
{ x  e.  A  |  ps }

Proof of Theorem ss2rabi
StepHypRef Expression
1 ss2rab 3218 . 2  |-  ( { x  e.  A  |  ph }  C_  { x  e.  A  |  ps } 
<-> 
A. x  e.  A  ( ph  ->  ps )
)
2 ss2rabi.1 . 2  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
31, 2mprgbir 2524 1  |-  { x  e.  A  |  ph }  C_ 
{ x  e.  A  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   {crab 2448    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rab 2453  df-in 3122  df-ss 3129
This theorem is referenced by:  supubti  6964  suplubti  6965
  Copyright terms: Public domain W3C validator