ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2rabi Unicode version

Theorem ss2rabi 3283
Description: Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999.)
Hypothesis
Ref Expression
ss2rabi.1  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
ss2rabi  |-  { x  e.  A  |  ph }  C_ 
{ x  e.  A  |  ps }

Proof of Theorem ss2rabi
StepHypRef Expression
1 ss2rab 3277 . 2  |-  ( { x  e.  A  |  ph }  C_  { x  e.  A  |  ps } 
<-> 
A. x  e.  A  ( ph  ->  ps )
)
2 ss2rabi.1 . 2  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
31, 2mprgbir 2566 1  |-  { x  e.  A  |  ph }  C_ 
{ x  e.  A  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178   {crab 2490    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rab 2495  df-in 3180  df-ss 3187
This theorem is referenced by:  supubti  7127  suplubti  7128  upgruhgr  15822  umgrupgr  15823  umgrislfupgrdom  15837
  Copyright terms: Public domain W3C validator