Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabss2 | Unicode version |
Description: Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
rabss2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.45 592 | . . . 4 | |
2 | 1 | alimi 1448 | . . 3 |
3 | dfss2 3136 | . . 3 | |
4 | ss2ab 3215 | . . 3 | |
5 | 2, 3, 4 | 3imtr4i 200 | . 2 |
6 | df-rab 2457 | . 2 | |
7 | df-rab 2457 | . 2 | |
8 | 5, 6, 7 | 3sstr4g 3190 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1346 wcel 2141 cab 2156 crab 2452 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-in 3127 df-ss 3134 |
This theorem is referenced by: sess2 4323 zsupssdc 11909 dvfgg 13451 |
Copyright terms: Public domain | W3C validator |