ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabss2 Unicode version

Theorem rabss2 3253
Description: Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
rabss2  |-  ( A 
C_  B  ->  { x  e.  A  |  ph }  C_ 
{ x  e.  B  |  ph } )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem rabss2
StepHypRef Expression
1 pm3.45 597 . . . 4  |-  ( ( x  e.  A  ->  x  e.  B )  ->  ( ( x  e.  A  /\  ph )  ->  ( x  e.  B  /\  ph ) ) )
21alimi 1466 . . 3  |-  ( A. x ( x  e.  A  ->  x  e.  B )  ->  A. x
( ( x  e.  A  /\  ph )  ->  ( x  e.  B  /\  ph ) ) )
3 dfss2 3159 . . 3  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
4 ss2ab 3238 . . 3  |-  ( { x  |  ( x  e.  A  /\  ph ) }  C_  { x  |  ( x  e.  B  /\  ph ) } 
<-> 
A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  B  /\  ph )
) )
52, 3, 43imtr4i 201 . 2  |-  ( A 
C_  B  ->  { x  |  ( x  e.  A  /\  ph ) }  C_  { x  |  ( x  e.  B  /\  ph ) } )
6 df-rab 2477 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
7 df-rab 2477 . 2  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
85, 6, 73sstr4g 3213 1  |-  ( A 
C_  B  ->  { x  e.  A  |  ph }  C_ 
{ x  e.  B  |  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    e. wcel 2160   {cab 2175   {crab 2472    C_ wss 3144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rab 2477  df-in 3150  df-ss 3157
This theorem is referenced by:  sess2  4353  zsupssdc  11973  dvfgg  14554
  Copyright terms: Public domain W3C validator